欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (4): 834-844.DOI: 10.11996/JG.j.2095-302X.2024040834

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于关键视图的文本驱动3D场景编辑方法

张冀1,2,3(), 崔文帅1, 张荣华1,3(), 王文彬1, 李亚琦1   

  1. 1.华北电力大学计算机系,河北 保定 071003
    2.河北省能源电力知识计算重点实验室,河北 保定 071003
    3.复杂能源系统智能计算教育部工程研究中心,河北 保定 071003
  • 收稿日期:2024-02-10 接受日期:2024-05-15 出版日期:2024-08-31 发布日期:2024-09-03
  • 通讯作者:张荣华(1973-),男,高级工程师,硕士。主要研究方向为计算机图形学、3D AIGC和数字孪生等。E-mail:zronghua88@aliyun.com
  • 第一作者:张冀(1972-),男,副教授,博士。主要研究方向为智能信息处理、深度学习、图像处理等。E-mail:72zhangji@163.com
  • 基金资助:
    河北省科技计划资助项目(22310302D)

A text-driven 3D scene editing method based on key views

ZHANG Ji1,2,3(), CUI Wenshuai1, ZHANG Ronghua1,3(), WANG Wenbin1, LI Yaqi1   

  1. 1. Department of Computer, North China Electric Power University, Baoding Hebei 071003, China
    2. Hebei Key Laboratory of Knowledge Computing for Energy & Power, Baoding Hebei 071003, China
    3. Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education, Baoding Hebei 071003, China
  • Received:2024-02-10 Accepted:2024-05-15 Published:2024-08-31 Online:2024-09-03
  • Contact: ZHANG Ronghua (1973-), senior engineer, master. His main research interests cover computer graphic, 3D AIGC and digital twin, etc. E-mail:zronghua88@aliyun.com
  • First author:ZHANG Ji (1972-), associate professor, Ph.D. His main research interests cover intelligent information processing, deep learning, image processing, etc. E-mail:72zhangji@163.com
  • Supported by:
    Hebei Provincial Science and Technology Program Funding(22310302D)

摘要:

基于去噪扩散模型的零样本图像编辑方法取得了瞩目的成就,将之应用于3D场景编辑可实现零样本的文本驱动3D场景编辑。然而,其3D编辑效果容易受扩散模型的3D连续性与过度编辑等问题影响,产生错误的编辑结果。针对这些问题,提出了一种新的文本驱动3D编辑方法,该方法从数据端着手,提出了基于关键视图的数据迭代方法与基于像素点的异常数据掩码模块。关键视图数据可以引导一个3D区域的编辑以减少3D不一致数据的影响,而数据掩码模块则可以过滤掉2D输入数据中的异常点。使用该方法,可以实现生动的照片级文本驱动3D场景编辑效果。实验证明,相较于一些目前先进的文本驱动3D场景编辑方法,可以大大减少3D场景中错误的编辑,实现更加生动的、更具真实感的3D编辑效果。此外,使用该方法生成的编辑结果更具多样性、编辑效率也更高。

关键词: 扩散模型, 文本驱动, 3D场景编辑, 关键视图, 数据掩码

Abstract:

The zero-shot image editing method based on denoising diffusion model has made remarkable achievements, and its application to 3D scene editing enables zero-shot text-driven 3D scene editing. However, its 3D editing results are easily affected by the 3D continuity of the diffusion model and over-editing, leading to erroneous editing results. To address these problems, a new text-driven 3D editing method was proposed, which started from the dataset and proposed key view-based data iteration and pixel-based abnormal data masking module. The key view data could guide the editing of a 3D area to minimize the effect of 3D inconsistent data, while the data masking module could filter out anomalies in the 2D input data. Using this method, vivid photo-quality text-driven 3D scene editing effects could be realized. Experiments have demonstrated that compared to some current advanced text-driven 3D scene editing methods, the erroneous editing in the 3D scenes could be greatly reduced, resulting in more vivid and realistic 3D editing effects. In addition, the editing results generated by the method in this paper were more diversified and more efficient.

Key words: diffusion model, text-driven, 3D scene editing, key views, data mask

中图分类号: