图学学报 ›› 2025, Vol. 46 ›› Issue (2): 259-269.DOI: 10.11996/JG.j.2095-302X.2025020259
李治寰1(), 宁小娟1,2(
), 吕志勇1,2, 石争浩1,2, 金海燕1,2, 王映辉3, 周文明4
收稿日期:
2024-08-22
接受日期:
2024-12-23
出版日期:
2025-04-30
发布日期:
2025-04-24
通讯作者:
宁小娟(1982-),女,教授,博士。主要研究方向为模式识别与图像处理。E-mail:ningxiaojuan@xaut.edu.cn第一作者:
李治寰(2000-),男,硕士研究生。主要研究方向为三维点云分割。E-mail:2221221125@stu.xaut.edu.cn
基金资助:
LI Zhihuan1(), NING Xiaojuan1,2(
), LV Zhiyong1,2, SHI Zhenghao1,2, JIN Haiyan1,2, WANG Yinghui3, ZHOU Wenming4
Received:
2024-08-22
Accepted:
2024-12-23
Published:
2025-04-30
Online:
2025-04-24
First author:
LI Zhihuan (2000-), master student. His main research interest covers 3D point cloud segmentation. E-mail:2221221125@stu.xaut.edu.cn
Supported by:
摘要:
大规模点云语义分割是三维视觉领域的重要任务,广泛应用于自动驾驶、机器人导航、智慧城市建设和虚拟现实等领域。然而,现有方法采用下采样操作以及由于多尺度特征之间的差异过大都会降低模型对细节和局部特征的感知能力,从而大大影响语义分割的准确性。针对上述问题,提出了一种基于双分支特征增强和多尺度融合的语义分割网络DEMF-Net。设计了双分支增强聚合模块(DEA),聚焦于邻域内点云属性信息和语义特征的编码,根据双边特征生成偏移特征,将偏移特征嵌入对应原始特征,从而提高模型的局部感知能力。同时为了有效减弱不同尺度下特征间的语义鸿沟,另外设计了多尺度特征融合模块(MFF),通过融合相邻不同尺度特征,得到包含全部编码层输出的全局特征,提高模型的全局上下文感知能力并融合上层和底层编码输出,以提高特征辨识度。在SensatUrban和S3DIS场景数据集上进行大量的实验验证和分析,结果表明该方法平均交并比(mIoU)分别达到了61.6%和66.7%。
中图分类号:
李治寰, 宁小娟, 吕志勇, 石争浩, 金海燕, 王映辉, 周文明. DEMF-Net:基于双分支增强和多尺度融合的大规模点云语义分割[J]. 图学学报, 2025, 46(2): 259-269.
LI Zhihuan, NING Xiaojuan, LV Zhiyong, SHI Zhenghao, JIN Haiyan, WANG Yinghui, ZHOU Wenming. DEMF-Net: dual-branch feature enhancement and multi-scale fusion for semantic segmentation of large-scale point clouds[J]. Journal of Graphics, 2025, 46(2): 259-269.
方法 | OA | mIoU | 地面 | 植被 | 建筑 | 墙 | 桥 | 停车场 | 铁轨 | 公路 | 街道设施 | 汽车 | 人行道 | 自行车 | 水 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet[ | 80.8 | 23.7 | 67.9 | 89.5 | 80.1 | 0.0 | 0.0 | 3.9 | 0.0 | 31.6 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 |
PointNet++[ | 84.3 | 32.9 | 72.5 | 94.2 | 84.8 | 2.7 | 2.1 | 25.8 | 0.0 | 31.5 | 11.4 | 38.8 | 7.1 | 0.0 | 56.9 |
TangetConv[ | 76.9 | 33.3 | 71.5 | 91.4 | 75.9 | 35.2 | 0.0 | 45.3 | 0.0 | 26.7 | 19.2 | 67.6 | 0.0 | 0.0 | 0.0 |
SPGraph[ | 85.3 | 37.3 | 69.9 | 94.6 | 88.9 | 32.8 | 12.6 | 15.8 | 15.5 | 30.6 | 22.9 | 56.4 | 0.5 | 0.0 | 44.2 |
SparseCpnv[ | 88.7 | 42.7 | 74.1 | 97.9 | 94.2 | 63.3 | 7.5 | 24.2 | 0.0 | 30.1 | 34.0 | 74.4 | 0.0 | 0.0 | 54.8 |
KPConv[ | 93.2 | 57.6 | 87.1 | 98.9 | 95.3 | 74.4 | 28.7 | 41.4 | 0.0 | 55.9 | 54.4 | 85.7 | 40.4 | 0.0 | 86.3 |
RandLA-Net[ | 89.8 | 52.7 | 80.1 | 98.1 | 91.6 | 48.9 | 40.6 | 51.6 | 0.0 | 56.7 | 33.2 | 80.1 | 32.6 | 0.0 | 71.3 |
BAF-LAC[ | 91.5 | 54.1 | 84.4 | 98.4 | 94.1 | 57.2 | 27.6 | 42.5 | 15.0 | 51.6 | 39.5 | 78.1 | 40.1 | 0.0 | 75.2 |
BAAF-Net[ | 91.8 | 56.1 | 83.3 | 98.2 | 94.0 | 54.2 | 51.0 | 57.0 | 0.0 | 60.4 | 40.0 | 81.3 | 41.6 | 0.0 | 68.0 |
NeiEA-Net[ | 91.7 | 57.0 | 83.3 | 98.1 | 93.4 | 50.1 | 61.3 | 57.8 | 0.0 | 60.0 | 41.6 | 82.4 | 42.1 | 0.0 | 71.0 |
MVP-Net[ | 93.3 | 59.4 | 85.1 | 98.5 | 95.9 | 66.6 | 57.5 | 52.7 | 0.0 | 61.9 | 49.7 | 81.8 | 43.9 | 0.0 | 78.2 |
LACV-Net[ | 93.2 | 61.3 | 85.5 | 98.4 | 95.6 | 61.9 | 58.6 | 64.0 | 28.5 | 62.8 | 45.4 | 81.9 | 42.4 | 4.8 | 67.7 |
DEMF-Net | 92.8 | 61.6 | 85.4 | 98.4 | 95.1 | 59.5 | 57.4 | 60.5 | 30.8 | 59.1 | 45.2 | 81.2 | 41.2 | 10.3 | 76.1 |
表1 SensatUrban数据集定量结果对比/%
Table 1 Quantitative results on the SensatUrban dataset/%
方法 | OA | mIoU | 地面 | 植被 | 建筑 | 墙 | 桥 | 停车场 | 铁轨 | 公路 | 街道设施 | 汽车 | 人行道 | 自行车 | 水 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet[ | 80.8 | 23.7 | 67.9 | 89.5 | 80.1 | 0.0 | 0.0 | 3.9 | 0.0 | 31.6 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 |
PointNet++[ | 84.3 | 32.9 | 72.5 | 94.2 | 84.8 | 2.7 | 2.1 | 25.8 | 0.0 | 31.5 | 11.4 | 38.8 | 7.1 | 0.0 | 56.9 |
TangetConv[ | 76.9 | 33.3 | 71.5 | 91.4 | 75.9 | 35.2 | 0.0 | 45.3 | 0.0 | 26.7 | 19.2 | 67.6 | 0.0 | 0.0 | 0.0 |
SPGraph[ | 85.3 | 37.3 | 69.9 | 94.6 | 88.9 | 32.8 | 12.6 | 15.8 | 15.5 | 30.6 | 22.9 | 56.4 | 0.5 | 0.0 | 44.2 |
SparseCpnv[ | 88.7 | 42.7 | 74.1 | 97.9 | 94.2 | 63.3 | 7.5 | 24.2 | 0.0 | 30.1 | 34.0 | 74.4 | 0.0 | 0.0 | 54.8 |
KPConv[ | 93.2 | 57.6 | 87.1 | 98.9 | 95.3 | 74.4 | 28.7 | 41.4 | 0.0 | 55.9 | 54.4 | 85.7 | 40.4 | 0.0 | 86.3 |
RandLA-Net[ | 89.8 | 52.7 | 80.1 | 98.1 | 91.6 | 48.9 | 40.6 | 51.6 | 0.0 | 56.7 | 33.2 | 80.1 | 32.6 | 0.0 | 71.3 |
BAF-LAC[ | 91.5 | 54.1 | 84.4 | 98.4 | 94.1 | 57.2 | 27.6 | 42.5 | 15.0 | 51.6 | 39.5 | 78.1 | 40.1 | 0.0 | 75.2 |
BAAF-Net[ | 91.8 | 56.1 | 83.3 | 98.2 | 94.0 | 54.2 | 51.0 | 57.0 | 0.0 | 60.4 | 40.0 | 81.3 | 41.6 | 0.0 | 68.0 |
NeiEA-Net[ | 91.7 | 57.0 | 83.3 | 98.1 | 93.4 | 50.1 | 61.3 | 57.8 | 0.0 | 60.0 | 41.6 | 82.4 | 42.1 | 0.0 | 71.0 |
MVP-Net[ | 93.3 | 59.4 | 85.1 | 98.5 | 95.9 | 66.6 | 57.5 | 52.7 | 0.0 | 61.9 | 49.7 | 81.8 | 43.9 | 0.0 | 78.2 |
LACV-Net[ | 93.2 | 61.3 | 85.5 | 98.4 | 95.6 | 61.9 | 58.6 | 64.0 | 28.5 | 62.8 | 45.4 | 81.9 | 42.4 | 4.8 | 67.7 |
DEMF-Net | 92.8 | 61.6 | 85.4 | 98.4 | 95.1 | 59.5 | 57.4 | 60.5 | 30.8 | 59.1 | 45.2 | 81.2 | 41.2 | 10.3 | 76.1 |
图4 SensatUrban数据集可视化结果对比((a)输入;(b)真值;(c)本文方法;(d) RandLA-Net;(e) BAF-LAC;(f) NeiEA-Net)
Fig. 4 Comparison of visualization results of SensatUrban dataset ((a) Input; (b) Ground truth; (c) Ours; (d) RandLA-Net; (e) BAF-LAC; (f) NeiEA-Net)
方法 | OA | mAcc | mIoU | 天花板 | 地板 | 墙 | 梁 | 柱 | 窗 | 门 | 桌 | 椅 | 沙发 | 书柜 | 板 | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet[ | - | 49.0 | 41.1 | 88.8 | 97.3 | 69.8 | 0.1 | 3.9 | 46.3 | 10.8 | 59.0 | 52.6 | 5.9 | 40.3 | 26.4 | 33.2 |
PointNet++[ | - | - | 47.8 | 90.3 | 95.6 | 69.3 | 0.1 | 13.8 | 26.7 | 44.1 | 64.3 | 70.0 | 27.8 | 47.8 | 30.8 | 38.1 |
SegCloud[ | - | 57.4 | 48.9 | 90.1 | 96.1 | 69.9 | 0.0 | 18.4 | 38.4 | 23.1 | 70.4 | 75.9 | 40.9 | 58.4 | 13.0 | 41.6 |
TangentConv[ | - | 62.2 | 52.6 | 90.5 | 97.7 | 74.0 | 0.0 | 20.7 | 39.0 | 31.3 | 77.5 | 69.4 | 57.3 | 38.5 | 48.8 | 39.8 |
PointCNN[ | 85.9 | 63.9 | 57.3 | 92.3 | 98.2 | 79.4 | 0.0 | 17.6 | 28.8 | 62.1 | 70.4 | 80.6 | 39.7 | 66.7 | 62.1 | 56.7 |
SPGraph[ | 86.4 | 66.5 | 58.0 | 89.4 | 96.9 | 78.1 | 0.0 | 42.8 | 48.9 | 61.6 | 84.7 | 75.4 | 69.8 | 52.6 | 2.1 | 52.5 |
RandLA-Net[ | 87.6 | 70.6 | 62.7 | 92.6 | 97.9 | 81.2 | 0.0 | 21.8 | 60.9 | 43.4 | 77.6 | 86.8 | 64.6 | 70.0 | 66.0 | 52.2 |
SCF-Net[ | 87.2 | 71.8 | 63.7 | 90.8 | 97.0 | 80.9 | 0.0 | 19.9 | 60.7 | 44.6 | 79.4 | 87.9 | 76.1 | 71.5 | 68.8 | 50.4 |
BAAF-Net[ | 88.2 | 73.0 | 64.4 | 93.7 | 97.7 | 82.1 | 0.0 | 33.1 | 61.7 | 51.1 | 79.2 | 86.6 | 62.4 | 69.8 | 64.9 | 54.6 |
BAF-LAC[ | - | - | 65.1 | 92.7 | 98.1 | 81.5 | 0.0 | 34.2 | 61.0 | 44.8 | 78.5 | 87.5 | 76.3 | 70.2 | 68.4 | 52.8 |
NeiEA-Net[ | 88.5 | 74.4 | 66.1 | 92.9 | 97.4 | 83.3 | 0.0 | 34.9 | 61.8 | 55.3 | 78.8 | 86.7 | 77.1 | 69.5 | 67.9 | 54.2 |
DEMF-Net | 88.3 | 76.0 | 66.7 | 92.3 | 98.0 | 82.1 | 0.1 | 35.0 | 63.4 | 48.7 | 80.0 | 89.7 | 81.5 | 71.5 | 71.6 | 53.3 |
表2 S3DIS数据集(区域5)的定量结果对比/%
Table 2 Quantitative comparison of results on the S3DIS (area 5) dataset/%
方法 | OA | mAcc | mIoU | 天花板 | 地板 | 墙 | 梁 | 柱 | 窗 | 门 | 桌 | 椅 | 沙发 | 书柜 | 板 | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet[ | - | 49.0 | 41.1 | 88.8 | 97.3 | 69.8 | 0.1 | 3.9 | 46.3 | 10.8 | 59.0 | 52.6 | 5.9 | 40.3 | 26.4 | 33.2 |
PointNet++[ | - | - | 47.8 | 90.3 | 95.6 | 69.3 | 0.1 | 13.8 | 26.7 | 44.1 | 64.3 | 70.0 | 27.8 | 47.8 | 30.8 | 38.1 |
SegCloud[ | - | 57.4 | 48.9 | 90.1 | 96.1 | 69.9 | 0.0 | 18.4 | 38.4 | 23.1 | 70.4 | 75.9 | 40.9 | 58.4 | 13.0 | 41.6 |
TangentConv[ | - | 62.2 | 52.6 | 90.5 | 97.7 | 74.0 | 0.0 | 20.7 | 39.0 | 31.3 | 77.5 | 69.4 | 57.3 | 38.5 | 48.8 | 39.8 |
PointCNN[ | 85.9 | 63.9 | 57.3 | 92.3 | 98.2 | 79.4 | 0.0 | 17.6 | 28.8 | 62.1 | 70.4 | 80.6 | 39.7 | 66.7 | 62.1 | 56.7 |
SPGraph[ | 86.4 | 66.5 | 58.0 | 89.4 | 96.9 | 78.1 | 0.0 | 42.8 | 48.9 | 61.6 | 84.7 | 75.4 | 69.8 | 52.6 | 2.1 | 52.5 |
RandLA-Net[ | 87.6 | 70.6 | 62.7 | 92.6 | 97.9 | 81.2 | 0.0 | 21.8 | 60.9 | 43.4 | 77.6 | 86.8 | 64.6 | 70.0 | 66.0 | 52.2 |
SCF-Net[ | 87.2 | 71.8 | 63.7 | 90.8 | 97.0 | 80.9 | 0.0 | 19.9 | 60.7 | 44.6 | 79.4 | 87.9 | 76.1 | 71.5 | 68.8 | 50.4 |
BAAF-Net[ | 88.2 | 73.0 | 64.4 | 93.7 | 97.7 | 82.1 | 0.0 | 33.1 | 61.7 | 51.1 | 79.2 | 86.6 | 62.4 | 69.8 | 64.9 | 54.6 |
BAF-LAC[ | - | - | 65.1 | 92.7 | 98.1 | 81.5 | 0.0 | 34.2 | 61.0 | 44.8 | 78.5 | 87.5 | 76.3 | 70.2 | 68.4 | 52.8 |
NeiEA-Net[ | 88.5 | 74.4 | 66.1 | 92.9 | 97.4 | 83.3 | 0.0 | 34.9 | 61.8 | 55.3 | 78.8 | 86.7 | 77.1 | 69.5 | 67.9 | 54.2 |
DEMF-Net | 88.3 | 76.0 | 66.7 | 92.3 | 98.0 | 82.1 | 0.1 | 35.0 | 63.4 | 48.7 | 80.0 | 89.7 | 81.5 | 71.5 | 71.6 | 53.3 |
图5 S3DIS数据集可视化结果对比((a)输入;(b)真值;(c)本文方法;(d) RandLA-Net;(e) BAAF-Net;(f) BAF-LAC)
Fig. 5 Comparison of visualization results on the S3DIS dataset ((a) Input; (b) Ground truth; (c) Ours; (d) RandLA-Net; (e) BAAF-Net; (f) BAF-LAC)
模型 | DEA | DRM | MFF | mIoU/% |
---|---|---|---|---|
Baseline | - | - | - | 62.7 |
A1 | √ | - | - | 65.2 |
A2 | √ | √ | - | 65.9 |
A3 | - | - | √ | 64.3 |
DEMF-Net | √ | √ | √ | 66.7 |
表3 DEMF-Net主体模块消融实验
Table 3 Ablation study of the main modules in DEMF-Net
模型 | DEA | DRM | MFF | mIoU/% |
---|---|---|---|---|
Baseline | - | - | - | 62.7 |
A1 | √ | - | - | 65.2 |
A2 | √ | √ | - | 65.9 |
A3 | - | - | √ | 64.3 |
DEMF-Net | √ | √ | √ | 66.7 |
图6 不同模型在S3DIS上可视化对比((a)真值;(b)基线方法;(c)模型A1;(d)模型A2;(e)模型A3;(f)本文模型)
Fig. 6 Visual comparison of different models on S3DIS ((a) Ground truth; (b) Baseline; (c) Model A1; (d) Model A2; (e) Model A3; (f) Ours)
方法 | FLOPs/ G | 参数量/ M | 推理时间/ (ms/batch) | mIoU/% |
---|---|---|---|---|
RandLANet | 3.13 | 4.99 | 392.2 | 62.7 |
BAAF-Net | 2.97 | 4.97 | 511.4 | 64.4 |
BAF-LAC | 6.62 | 11.64 | 582.8 | 65.1 |
NeiEA-Net | 3.40 | 4.87 | 541.8 | 66.1 |
DEMF-Net | 3.72 | 6.14 | 426.8 | 66.7 |
表4 在S3DIS数据集上的计算效率对比
Table 4 Comparison of computational efficiency on S3DIS
方法 | FLOPs/ G | 参数量/ M | 推理时间/ (ms/batch) | mIoU/% |
---|---|---|---|---|
RandLANet | 3.13 | 4.99 | 392.2 | 62.7 |
BAAF-Net | 2.97 | 4.97 | 511.4 | 64.4 |
BAF-LAC | 6.62 | 11.64 | 582.8 | 65.1 |
NeiEA-Net | 3.40 | 4.87 | 541.8 | 66.1 |
DEMF-Net | 3.72 | 6.14 | 426.8 | 66.7 |
[1] | LI Z Y, CHEN Z H, LI A, et al. Unsupervised domain adaptation for monocular 3D object detection via self-training[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 245-262. |
[2] | YAN X, GAO J T, ZHENG C D, et al. 2DPASS: 2D priors assisted semantic segmentation on LiDAR point clouds[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 677-695. |
[3] | HAN X, DONG Z, YANG B S. A point-based deep learning network for semantic segmentation of MLS point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 199-214. |
[4] | WAN J, XIE Z, XU Y Y, et al. DGANet: a dilated graph attention-based network for local feature extraction on 3D point clouds[J]. Remote Sensing, 2021, 13(17): 3484. |
[5] | SHAO J, ZHANG W M, SHEN A J, et al. Seed point set-based building roof extraction from airborne LiDAR point clouds using a top-down strategy[J]. Automation in Construction, 2021, 126: 103660. |
[6] | YANG G Q, XUE F Y, ZHANG Q, et al. UrbanBIS: a large-scale benchmark for fine-grained urban building instance segmentation[C]// ACM SIGGRAPH 2023 Conference Proceedings. New York: ACM, 2023: 16. |
[7] | MARSOCCI V, COLETTA V, RAVANELLI R, et al. New trends in urban change detection:detecting 3D changes from bitemporal optical images[EB/OL]. [2024-06-22]. https://meetingorganizer.copernicus.org/EGU23/EGU23-13357.html. |
[8] | 崔振东, 李宗民, 杨树林, 等. 基于语义分割引导的三维目标检测[J]. 图学学报, 2022, 43(6): 1134-1142. |
CUI Z D, LI Z M, YANG S L, et al. 3D object detection based on semantic segmentation guidance[J]. Journal of Graphics, 2022, 43(6): 1134-1142 (in Chinese). | |
[9] | 王江安, 庞大为, 黄乐, 等. 基于多尺度特征递归卷积的稠密点云重建网络[J]. 图学学报, 2022, 43(5): 875-883. |
WANG J A, PANG D W, HUANG L, et al. Dense point cloud reconstruction network using multi-scale feature recursive convolution[J]. Journal of Graphics, 2022, 43(5): 875-883 (in Chinese). | |
[10] | QI C R, SU H, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 77-85. |
[11] | HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11105-11114. |
[12] | BOULCH A, GUERRY J, LE SAUX B et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2018, 71: 189-198. |
[13] | TATARCHENKO M, PARK J, KOLTUN V, et al. Tangent convolutions for dense prediction in 3D[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3887-3896. |
[14] | JARITZ M, GU J Y, SU H. Multi-view PointNet for 3D scene understanding[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop. New York: IEEE Press, 2019: 3395-4003. |
[15] |
ZHOU W G, JIANG X, LIU Y H. MVPointNet: multi-view network for 3D object based on point cloud[J]. IEEE Sensors Journal, 2019, 19(24): 12145-12152.
DOI |
[16] | HUANG J, YOU S Y. Point cloud labeling using 3D convolutional neural network[C]// The 23rd International Conference on Pattern Recognition. New York: IEEE Press, 2016: 2670-2675. |
[17] | WANG P S, LIU Y, GUO Y X, et al. O-CNN: octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics, 2017, 36(4): 72. |
[18] | TCHAPMI L, CHOY C, ARMENI I, et al. SEGCloud: semantic segmentation of 3D point clouds[C]// 2017 International Conference on 3D Vision. New York: IEEE Press, 2017: 537-547. |
[19] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 3431-3440. |
[20] | MENG H Y, GAO L, LAI Y K et al. VV-Net: voxel VAE net with group convolutions for point cloud segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 8499-8507. |
[21] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// The 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5105-5114. |
[22] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. |
[23] | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6410-6419. |
[24] | LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]// 2018 IEEE/CVF conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4558-4567. |
[25] | QIU S, ANWAR S, BARNES N. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 1757-1767. |
[26] | ZENG Z Y, XU Y Y, XIE Z, et al. Large-scale point cloud semantic segmentation via local perception and global descriptor vector[J]. Expert Systems with Applications, 2024, 246: 123269. |
[27] | ZENG Z Y, XU Y Y, XIE Z, et al. LEARD-Net: semantic segmentation for large-scale point cloud scene[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102953. |
[28] | HU Q Y, YANG B, KHALID S, et al. Towards semantic segmentation of urban-scale 3D point clouds: a dataset, benchmarks and challenges[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021:4975-4985. |
[29] | GRAHAM B, ENGELCKE M, VAN DER MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 9224-9232. |
[30] | SHUAI H, XU X, LIU Q S. Backward attentive fusing network with local aggregation classifier for 3D point cloud semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 4973-4984. |
[31] | XU Y Y, TANG W, ZENG Z Y, et al. NeiEA-NET: semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 119: 103285. |
[32] | LI H C, GUAN H Y, MA L F, et al. MVPNet: a multi-scale voxel-point adaptive fusion network for point cloud semantic segmentation in urban scenes[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103391. |
[33] | LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on Χ-transformed points[C]// The 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 828-838. |
[34] | FAN S Q, DONG Q L, ZHU F H, et al. SCF-Net: learning spatial contextual features for large-scale point cloud segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 14499-14508. |
[1] | 刘高屹, 胡瑞珍, 刘利刚. 基于2D特征蒸馏的3D高斯泼溅语义分割与编辑[J]. 图学学报, 2025, 46(2): 312-321. |
[2] | 张桂梅, 陶辉, 鲁飞飞, 彭昆. 基于双源判别器的域自适应城市场景语义分割[J]. 图学学报, 2023, 44(5): 907-917. |
[3] | 吴文欢, 张淏坤. 融合空间十字注意力与通道注意力的语义分割网络[J]. 图学学报, 2023, 44(3): 531-539. |
[4] | 崔振东, 李宗民, 杨树林, 刘玉杰, 李华. 基于语义分割引导的三维目标检测[J]. 图学学报, 2022, 43(6): 1134-1142. |
[5] | 范溢华 , 王永振 , 燕雪峰 , 宫丽娜 , 郭延文 , 魏明强 . 人脸识别任务驱动的低光照图像增强算法 [J]. 图学学报, 2022, 43(6): 1170-1181. |
[6] | 姚 翰, 殷雪峰, 李 童, 张肇轩, 杨 鑫, 尹宝才. 基于多任务模型的深度预测算法研究[J]. 图学学报, 2021, 42(3): 446-453. |
[7] | 郑顾平, 王 敏, 李 刚 . 基于注意力机制的多尺度融合航拍影像语义分割[J]. 图学学报, 2018, 39(6): 1069-1077. |
[8] | 张万里, 王金娥. 基于特征识别的轴类零件二维工程图的自动编程[J]. 图学学报, 2013, 34(1): 133-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||