欢迎访问《图学学报》 分享到:

图学学报

• 图像与视频处理 • 上一篇    下一篇

基于 Laplace 逼近 Gaussian 过程的指节图像中层 偏移测度特征学习

  

  1. (西安理工大学机械与精密仪器工程学院,陕西 西安 710048)
  • 出版日期:2019-06-30 发布日期:2019-08-02
  • 基金资助:
    国家自然科学基金项目(51475365);陕西省自然科学基础研究计划项目(2017JM5088)

Knuckle Image Offset Measure Feature Learning Based on Laplace Approximation Gaussian Processes

  1. (School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an Shaanxi 710048, China)
  • Online:2019-06-30 Published:2019-08-02

摘要: 在人机协调装配中,为了准确描述手部位姿,需要精确的指节图像特征提取与识 别。为了丰富手部信息,提出了基于 Laplace 逼近 Gaussian 过程的多分类算法,以实现基于手 部图像的指节识别。在类别信息无关联的假设基础上,将中层偏移测度特征的学习转化为对随 机量的学习;然后通过分析二值多分类高斯场上的后验计算,给出了基于 Laplace 逼近 Gaussian 过程的多分类高斯过程学习算法;通过构造中层随机信息的正定核函数,给出了基于 Laplace 的多分类高斯过程预测算法。最后,利用中层数据的分布学习与预测算法进行了指节图像训练 学习和固定阈值的图像识别。识别结果显示,该方法具有一定的指节识别能力。

关键词: 高斯过程, 图像识别, 指节图像, 特征学习

Abstract: In man-machine coordinated assembly, the precise finger image feature should be extracted and recognized to accurately present the hand posture. In order to enrich the hand information of co-operator, a multi-classification algorithm based on Laplace approximation Gaussian process is put forward to achieve the knuckle recognition based on the hand image. According to the assumption that the category information is unrelated to each other, the learning of knuckle image mid-level offset measure features is transformed into the learning of random quantities. A multi-class Gaussian process learning algorithm based on Laplace approximation Gaussian process is presented by analyzing the posterior computation in binary multi-class Gaussian field and constructing the positive definite kernel function of knuckle image middle-level random information. The knuckle image training and learning and the image recognition of fixed threshold value are conducted using the mid-level distribution learning and predicting algorithm. The recognition results show that this method is feasible.

Key words:  Gaussian process, image recognition, knuckle image, feature learning