欢迎访问《图学学报》 分享到:

图学学报

• 图像与视频处理 • 上一篇    下一篇

一种基于目标优化学习的车标识别方法

  

  1. (1. 安徽百诚慧通科技有限公司,安徽 合肥 230009; 
    2. 云南省公安厅交通警察总队,云南 昆明 650224; 
    3. 合肥工业大学计算机与信息学院,安徽 合肥 230009)
  • 出版日期:2019-08-31 发布日期:2019-08-30
  • 基金资助:
    安徽省重点研究和开发计划项目(201904d07020010);安徽省自然科学基金项目(1708085MF158);合肥工业大学智能制造技术研究院科技 成果转化及产业化重点项目(IMICZ2017010)

A Vehicle Logo Recognition Method Based on Objective Optimization

  1. (1. Anhui BaiChengHuiTong Science and Technology Co. Ltd, Hefei Anhui 230009, China;  
    2. Traffic Police Headquarters of Yunnan Public Security Department, Kunming Yunnan 650224, China;  3
    . School of Computer and Information, Hefei University of Technology, Hefei Anhui 230009, China)
  • Online:2019-08-31 Published:2019-08-30

摘要: 摘 要:近年来,车标识别因其在智能交通系统中的重要作用,受到研究者的广泛关注。 传统的车标识别算法多基于手工描述子,需要丰富的先验知识,且难以适应复杂多变的现实应 用场景。相比手工描述子,特征学习方法在解决复杂场景的计算机视觉问题时具有更优性能。 因此,提出一种基于目标优化学习的车标识别方法,基于从原图像中提取的像素梯度差矩阵, 通过目标优化,自主学习特征参数。然后将像素梯度差矩阵映射为紧凑的二值矩阵,通过特征 码本的方式对特征信息进行编码,生成鲁棒的特征向量。基于公开车标数据集 HFUT-VL1 和 XMU 进行实验,并与其他车标识别方法进行比较。实验结果表明,与基于传统特征描述子的 方法相比,该算法识别率更高,与基于深度学习的方法相比,训练和测试时间更少。

关键词: 关 键 词:车标识别, 目标优化, 特征学习, 码本, 像素梯度差矩阵

Abstract: Abstract: Vehicle logo recognition plays a more and more important role in intelligent transportation systems and has attracted extensive attention of researchers. Most traditional VLR methods are based on hand-crafted descriptors for which much heuristic knowledge is required, and thus are hard to adapt to complex and changeable realistic scenarios. Compared with hand-crafted descriptors, the feature learned methods perform betterin solving computer vision problems in complex environments. In the present study, a logo recognition method based on objective optimization learning is proposed to solve the VLR problem in this paper. First, feature parameters are automatically learned from pixel different matrix (PDM) extracted from raw images. Then, the PDMs are mapped into compact binary matrices with the learned feature parameters, and then the codebooks are learned from binary matrices with supervised learning. Finally, the feature vectors are extracted from test images with the learned feature parameters and codebooks. Experiments are carried out on open datasets HFUT-VL and XMU, and the results are analyzed and compared with other state-of-the-art methods. Experimental results show that our method can obtain higher recognition accuracy than hand-crafted descriptor based methods, and less training and testing time is required than deep learning based methods.

Key words: Keywords: vehicle logo recognition, objective optimization, feature learning, codebook, pixel difference matrix