摘要: 针对传统ORB 算法阈值选取固定,存在误提取、误匹配,无法满足不同图像特征
点的准确提取和匹配的问题,提出了一种改进的ORB 特征点提取与匹配方法。首先设定局部
自适应阈值;然后通过像素分类,设计自适应阈值选取准则,达到ORB 特征点的精准提取;
最后在改进ORB 特征点基础上通过PROSAC 算法完成对特征点的匹配。实验结果表明,改进
后的方法对亮度变化具有较强的适应能力,计算速度和提取精度得到了提升。匹配总时间降低,
误匹配点对数量较少,正确匹配率较高,具有良好的准确性和实时性。利用匹配阶段得到的特
征点进行跟踪时得到的RMSE 误差较小,表明匹配精度得到了较大提升。和其他方法相比,具
有更好的环境适应能力和应用价值。