欢迎访问《图学学报》 分享到:

图学学报 ›› 2021, Vol. 42 ›› Issue (5): 755-761.DOI: 10.11996/JG.j.2095-302X.2021050755

• 图像处理与计算机视觉 • 上一篇    下一篇

具有空间调整和稀疏约束的相关滤波跟踪算法

  

  1. 沈阳大学信息工程学院,辽宁 沈阳 110044
  • 出版日期:2021-10-31 发布日期:2021-11-03
  • 基金资助:
    国家自然科学基金项目(61703285);辽宁省自然科学基金项目(2019-MS-237);辽宁省博士科研启动基金计划项目(2020-BS-263) 

Correlation filter tracking with spatial regularization and sparse constraints 

  1. School of Information Engineering, Shenyang University, Shenyang Liaoning 110044, China
  • Online:2021-10-31 Published:2021-11-03
  • Supported by:
    National Natural Science Foundation of China (61703285); Natural Science Foundation of Liaoning Province (2019-MS-237); Ph.D Research Startup Foundation of Liaoning Province (2020-BS-263) 

摘要: 因频繁遮挡、尺度变化、边界效应等因素的影响,进行目标跟踪时,时常难以达到较好的预期 效果。再有,采用传统特征提取策略也会影响目标跟踪的鲁棒性。针对上述问题,提出一种具有空间调整和稀 疏约束的相关跟踪算法。利用传统特征与深度特征的有效融合,适应目标表观变化;基于峰值旁瓣比判别目标 在跟踪过程中是否被遮挡,若发生遮挡,则对滤波器进行稀疏正则化约束,提高模型对遮挡问题的鲁棒性;若 未发生遮挡,则通过高斯空间调整惩罚滤波器系数,抑制边界效应的影响。实验利用 OTB 数据集中 5 组涵盖 了严重遮挡和尺度变化等挑战因素的标准视频序列进行测试,定性和定量对比了算法与 4 种热点算法的跟踪效 果。定性分析中基于视频序列的主要挑战因素进行比较,定量分析通过中心点位置误差和重叠率比较跟踪算法 的性能。实验结果表明,算法对上述挑战因素更具鲁棒性。

关键词: 目标跟踪, 相关滤波, 深度特征, 稀疏约束, 空间调整

Abstract: Due to the influence of frequent occlusion, scale variation, boundary effect and other factors, it is often difficult to achieve the desired results in target tracking. At the same time, the traditional feature extraction strategy affects the robustness of target tracking. To address the above problems, we proposed a correlation filter tracking algorithm with spatial regularization and sparse constraints, which utilized the effective fusion of traditional features and deep features to adapt to the changes of the target appearance. Based on the peak side lobe ratio, a judgment was made on whether the target is occluded in the tracking process. If occlusion occurs, sparse constraints are applied to the filter for the improvement of robustness against the occlusion problem. Otherwise, the filter coefficients are adjusted in Gaussian space to suppress the influence of boundary effect. Five sets of standard video sequences in OTB datasets including severe occlusion and scale change, were used to test the tracking performance of the proposed algorithm, and four hot spot algorithms were compared qualitatively and quantitatively. In qualitative analysis, the main challenges of video sequences were compared. In quantitative analysis, the performance of tracking algorithm was compared by center point position error and overlap success rate. Experimental results show that the proposed algorithm is more robust to the above-mentioned challenges. 

Key words:  , target tracking, correlation filtering, deep feature, sparse constraint, space regularization 

中图分类号: