[1] |
WANG S M, LI X G, ZHANG H, et al. A gradient-domain image enhancement method for traffic signs in nighttime surveillance[C]// The 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. New York: IEEE Press, 2018: 1-6.
|
[2] |
YANG K F, ZHANG X S, LI Y J. A biological vision inspired framework for image enhancement in poor visibility conditions[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 29: 1493-1506.
DOI
URL
|
[3] |
YING Z Q, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[EB/OL]. [2022-03-17]. https://arxiv.org/abs/1711.00591.
|
[4] |
WANG S H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548.
DOI
PMID
|
[5] |
ZHANG F, LI Y, YOU S D, et al. Learning temporal consistency for low light video enhancement from single images[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 4965-4974.
|
[6] |
LV F F, LI Y, LU F. Attention guided low-light image enhancement with a large scale low-light simulation dataset[J]. International Journal of Computer Vision, 2021, 129(7): 2175-2193.
DOI
|
[7] |
WEI X X, ZHANG X S, WANG S S, et al. BLNet: a fast deep learning framework for low-light image enhancement with noise removal and color restoration[EB/OL]. [2022-07-21]. https://arxiv.org/abs/2106.15953.
|
[8] |
JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 1997, 6(3): 451-462.
DOI
URL
|
[9] |
JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 1997, 6(7): 965-976.
DOI
URL
|
[10] |
YING Z Q, LI G, REN Y R, et al. A new low-light image enhancement algorithm using camera response model[C]// 2017 IEEE International Conference on Computer Vision Workshops. New York: IEEE Press, 2018: 3015-3022.
|
[11] |
REN Y R, YING Z Q, LI T H, et al. LECARM: low-light image enhancement using the camera response model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(4): 968-981.
DOI
URL
|
[12] |
LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2018, 27(6): 2828-2841.
DOI
URL
|
[13] |
杨勇, 刘惠义. 极端低光情况下的图像增强方法[J]. 图学学报, 2020, 41(4): 520-528.
|
|
YANG Y, LIU H Y. The method of image enhancement under extremely low-light conditions[J]. Journal of Graphics, 2020, 41(4): 520-528. (in Chinese)
|
[14] |
李华基, 程江华, 刘通, 等. 基于U-net++网络的弱光图像增强方法[J]. 计算机科学, 2021, 48(S2): 278-282.
|
|
LI H J, CHENG J H, LIU T, et al. Low-light image enhancement method based on U-net++ network[J]. Computer Science, 2021, 48(S2): 278-282. (in Chinese)
|
[15] |
LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
DOI
URL
|
[16] |
LV F, LU F, WU J, et al. MBLLEN: Low-light image/video enhancement using CNNs[C]// British Machine Vision Conference. Newcastle: IJCV, 2018: 4.
|
[17] |
REN W Q, LIU S F, MA L, et al. Low-light image enhancement via a deep hybrid network[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 28(9): 4364-4375.
DOI
URL
|
[18] |
CHEN Y S, WANG Y C, KAO M H, et al. Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6306-6314.
|
[19] |
CHEN C, CHEN Q F, XU J, et al. Learning to see in the dark[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3291-3300.
|
[20] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
|
[21] |
GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 1777-1786.
|
[22] |
胡韦伟, 汪荣贵, 方帅, 等. 基于双边滤波的Retinex图像增强算法[J]. 工程图学学报, 2010, 31(2): 104-109.
|
|
HU W W, WANG R G, FANG S, et al. Retinex algorithm for image enhancement based on bilateral filtering[J]. Journal of Engineering Graphics, 2010, 31(2): 104-109. (in Chinese)
|
[23] |
张杰, 周浦城, 张谦. 基于迭代多尺度引导滤波Retinex的低照度图像增强[J]. 图学学报, 2018, 39(1): 1-11.
|
|
ZHANG J, ZHOU P C, ZHANG Q. Low-light image enhancement based on iterative multi-scale guided filter retinex[J]. Journal of Graphics, 2018, 39(1): 1-11. (in Chinese)
|
[24] |
LI Y, TAN R T, BROWN M S. Nighttime haze removal with glow and multiple light colors[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2016: 226-234.
|
[25] |
LI C Y, GUO C L, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238.
|
[26] |
ZHANG Y, DI X G, ZHANG B, et al. Self-supervised image enhancement network: training with low light images only[EB/OL]. [2022-07-21]. https://arxiv.org/abs/2002.11300.
|
[27] |
ZHENG S, GUPTA G. Semantic-guided zero-shot learning for low-light image/video enhancement[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. New York: IEEE Press, 2022: 581-590.
|