图学学报 ›› 2023, Vol. 44 ›› Issue (2): 249-259.DOI: 10.11996/JG.j.2095-302X.2023020249
收稿日期:
2022-08-12
接受日期:
2022-10-10
出版日期:
2023-04-30
发布日期:
2023-05-01
通讯作者:
储珺(1967-),女,教授,博士。主要研究方向为复杂场景的目标检测和跟踪。E-mail:作者简介:
曾伦杰(1997-),男,硕士研究生。主要研究方向为深度学习与目标检测。E-mail:13576563600@163.com
基金资助:
ZENG Lun-jie1(), CHU Jun1,2(
), CHEN Zhao-jun2
Received:
2022-08-12
Accepted:
2022-10-10
Online:
2023-04-30
Published:
2023-05-01
Contact:
CHU Jun (1967-), professor, Ph.D. Her main research interests cover object detection and tracking in complex scenes. E-mail:About author:
ZENG Lun-jie (1997-), master student. His main research interests cover deep learning and object detection. E-mail:13576563600@163.com
Supported by:
摘要:
由于现有遥感图像数据集中不同类别目标的数量差异大,数据集中存在类别分布不平衡问题,影响网络模型对少数类别的检测精度。针对以上问题,提出了二阶段锚框和类均衡损失的遥感图像目标检测算法。通过K-means聚类生成遥感数据集的类平衡标签,再将得到的类平衡标签作为第二阶段K-means聚类的初始中心,生成的预设锚框能够兼顾少数类别尺度,提高少数类别实例的检测精度。同时构建类别平衡损失(CEQL),在平衡损失(EQL)的基础上,采用有效样本构建辅助权重,提高模型在训练过程中对少数类别的关注度。实验表明,改进后模型的平均准确率均值、少数类别平均准确率分别达到76.13%和76.51%,对比基准网络分别提高了1.56%和1.75%。在DOIR和NWPU VHR-10数据集上,与主流方法Faster-RCNN,RetinaNet,CenterNet,YOLOv4,YOLOX-L,YOLOv5及YOLOv7等进行了对比,实验表明改进后的算法能够在保证多数类别检测精度的基础上,有效提高了少数类别的检测精度。
中图分类号:
曾伦杰, 储珺, 陈昭俊. 二阶段锚框和类均衡损失的遥感图像目标检测[J]. 图学学报, 2023, 44(2): 249-259.
ZENG Lun-jie, CHU Jun, CHEN Zhao-jun. Object detection in remote sensing image based on two-stage anchor and class balanced loss[J]. Journal of Graphics, 2023, 44(2): 249-259.
图1 K-means在VOC和DIOR数据集生成锚框对比((a) K-means在VOC数据集下生的预设锚框;(b) K-means在DIOR数据集下生成的预设锚框;(c) DIOR和VOC数据集下生的预设锚框交并比与各类别交并比偏差关系)
Fig. 1 K-means generates anchor box comparison in VOC and DIOR datasets ((a) Preset anchor frames generated by K-means under VOC datasets; (b) Preset anchor frames generated by K-means under DIOR datasets; (c) Deviation relationship between intersection and ratio of preset anchor frames under DIOR and VOC datasets)
图4 K-means和TK-means在DIOR数据集生成锚框对比((a) K-means在DIOR数据集下生的预设锚框;(b) TK-means在DIOR数据集下生成的预设锚框;(c) DIOR数据集下2种预设锚框交并比与各类别交并比偏差关系)
Fig. 4 Comparison of anchor boxes generated by K-means and TK means in Dior dataset ((a) Preset anchor frames generated by TK-means under datasets; (b) Preset anchor frames generated by TK-means under DIOR datasets; (c) Deviation relationship between the intersection and ratio of two preset anchor frames and each category under DIOR dataset)
图5 遥感数据集中的实例分布((a) NWPU VHR-10数据集类别实例分布;(b) DIOR数据集类别实例分布)
Fig. 5 Instance distribution in remote sensing datasets ((a) NWPU VHR-10 dataset category instance distribution; (b) DIOR dataset category instance distribution)
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.85 | 74.57 | 45.73 |
+ K-means | 73.92 | 81.75 | 66.45 | 73.58 | 46.39 |
+ K-means++ | 74.73 | 82.65 | 67.75 | 74.47 | 45.94 |
+TK-means (Ours) | 75.65 | 84.62 | 68.09 | 75.41 | 45.67 |
表1 不同聚类方法生成锚框效果对比(%)
Table 1 Comparison of anchor box generated by different clustering methods (%)
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.85 | 74.57 | 45.73 |
+ K-means | 73.92 | 81.75 | 66.45 | 73.58 | 46.39 |
+ K-means++ | 74.73 | 82.65 | 67.75 | 74.47 | 45.94 |
+TK-means (Ours) | 75.65 | 84.62 | 68.09 | 75.41 | 45.67 |
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.86 | 74.57 | 45.73 |
+ Focal Loss | 73.31 | 82.88 | 67.30 | 73.38 | 45.99 |
+ EQL | 57.82 | 83.85 | 67.43 | 61.87 | 45.33 |
+ CB Loss | 11.17 | 35.26 | 41.16 | 18.08 | 46.45 |
+ CEQL (Ours) | 75.99 | 84.85 | 68.27 | 75.72 | 45.78 |
表2 不同损失函数结果对比(%)
Table 2 Comparison of different loss function results (%)
方法 | APr | APc | APf | mAP | FPS |
---|---|---|---|---|---|
YOLOv4 | 74.76 | 83.17 | 67.86 | 74.57 | 45.73 |
+ Focal Loss | 73.31 | 82.88 | 67.30 | 73.38 | 45.99 |
+ EQL | 57.82 | 83.85 | 67.43 | 61.87 | 45.33 |
+ CB Loss | 11.17 | 35.26 | 41.16 | 18.08 | 46.45 |
+ CEQL (Ours) | 75.99 | 84.85 | 68.27 | 75.72 | 45.78 |
数据集 | TK-means | CEQL | APr | APc | APf | mAP |
---|---|---|---|---|---|---|
DIOR | - | - | 74.76 | 83.17 | 67.85 | 74.57 |
√ | - | 75.65 | 84.62 | 68.09 | 75.41 | |
- | √ | 75.99 | 84.85 | 68.27 | 75.72 | |
√ | √ | 76.51 | 84.53 | 68.62 | 76.13 | |
NWPU VHR-10 | - | - | 82.75 | 89.19 | 94.55 | 89.94 |
√ | - | 84.68 | 91.62 | 94.84 | 91.15 | |
- | √ | 85.06 | 92.11 | 95.12 | 91.50 | |
√ | √ | 85.72 | 93.05 | 95.04 | 91.85 |
表3 不同数据集消融实验结果(%)
Table 3 Ablation experiment results of different data sets (%)
数据集 | TK-means | CEQL | APr | APc | APf | mAP |
---|---|---|---|---|---|---|
DIOR | - | - | 74.76 | 83.17 | 67.85 | 74.57 |
√ | - | 75.65 | 84.62 | 68.09 | 75.41 | |
- | √ | 75.99 | 84.85 | 68.27 | 75.72 | |
√ | √ | 76.51 | 84.53 | 68.62 | 76.13 | |
NWPU VHR-10 | - | - | 82.75 | 89.19 | 94.55 | 89.94 |
√ | - | 84.68 | 91.62 | 94.84 | 91.15 | |
- | √ | 85.06 | 92.11 | 95.12 | 91.50 | |
√ | √ | 85.72 | 93.05 | 95.04 | 91.85 |
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
桥梁 | 62.25 | 76.98 | 68.79 | 59.07 | 61.88 | 67.74 | 67.18 | 62.01 |
篮球场 | 86.31 | 78.10 | 90.60 | 90.74 | 96.80 | 59.02 | 89.77 | 95.47 |
田径场 | 94.44 | 97.74 | 96.27 | 98.45 | 94.66 | 95.45 | 96.33 | 99.68 |
港口 | 89.63 | 93.70 | 93.76 | 91.15 | 96.07 | 95.33 | 91.08 | 96.66 |
船舶 | 60.47 | 78.05 | 77.84 | 87.23 | 86.70 | 80.08 | 86.51 | 89.44 |
棒球场 | 92.78 | 99.13 | 99.23 | 98.25 | 98.71 | 98.39 | 98.78 | 98.43 |
网球场 | 80.86 | 79.21 | 90.95 | 97.51 | 92.83 | 83.28 | 86.02 | 95.76 |
车辆 | 50.91 | 67.08 | 70.19 | 91.80 | 88.80 | 79.62 | 82.55 | 92.62 |
贮罐 | 59.46 | 76.11 | 76.80 | 89.90 | 96.62 | 90.27 | 92.30 | 93.09 |
飞机 | 96.99 | 98.41 | 99.65 | 95.27 | 100.00 | 99.91 | 99.82 | 95.30 |
APf | 76.20 | 83.99 | 87.36 | 94.55 | 95.39 | 90.29 | 91.89 | 95.04 |
APc | 75.05 | 85.88 | 85.80 | 89.19 | 91.39 | 87.71 | 88.80 | 93.05 |
APr | 81.00 | 84.27 | 85.22 | 82.75 | 84.45 | 74.07 | 84.43 | 85.72 |
mAP | 77.41 | 84.45 | 86.41 | 89.94 | 91.31 | 84.91 | 89.03 | 91.85 |
FPS | 18.62 | 38.56 | 37.48 | 46.84 | 48.73 | 46.16 | 43.13 | 46.47 |
表4 NWPU VHR-10数据集中不同检测算法各类别检测精度(%)
Table 4 Detection accuracy of different detection algorithms and categories in NWPU VHR-10 dataset (%)
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
桥梁 | 62.25 | 76.98 | 68.79 | 59.07 | 61.88 | 67.74 | 67.18 | 62.01 |
篮球场 | 86.31 | 78.10 | 90.60 | 90.74 | 96.80 | 59.02 | 89.77 | 95.47 |
田径场 | 94.44 | 97.74 | 96.27 | 98.45 | 94.66 | 95.45 | 96.33 | 99.68 |
港口 | 89.63 | 93.70 | 93.76 | 91.15 | 96.07 | 95.33 | 91.08 | 96.66 |
船舶 | 60.47 | 78.05 | 77.84 | 87.23 | 86.70 | 80.08 | 86.51 | 89.44 |
棒球场 | 92.78 | 99.13 | 99.23 | 98.25 | 98.71 | 98.39 | 98.78 | 98.43 |
网球场 | 80.86 | 79.21 | 90.95 | 97.51 | 92.83 | 83.28 | 86.02 | 95.76 |
车辆 | 50.91 | 67.08 | 70.19 | 91.80 | 88.80 | 79.62 | 82.55 | 92.62 |
贮罐 | 59.46 | 76.11 | 76.80 | 89.90 | 96.62 | 90.27 | 92.30 | 93.09 |
飞机 | 96.99 | 98.41 | 99.65 | 95.27 | 100.00 | 99.91 | 99.82 | 95.30 |
APf | 76.20 | 83.99 | 87.36 | 94.55 | 95.39 | 90.29 | 91.89 | 95.04 |
APc | 75.05 | 85.88 | 85.80 | 89.19 | 91.39 | 87.71 | 88.80 | 93.05 |
APr | 81.00 | 84.27 | 85.22 | 82.75 | 84.45 | 74.07 | 84.43 | 85.72 |
mAP | 77.41 | 84.45 | 86.41 | 89.94 | 91.31 | 84.91 | 89.03 | 91.85 |
FPS | 18.62 | 38.56 | 37.48 | 46.84 | 48.73 | 46.16 | 43.13 | 46.47 |
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
火车站 | 60.81 | 57.07 | 55.20 | 67.56 | 68.40 | 62.97 | 62.78 | 71.82 |
大坝 | 61.99 | 59.19 | 62.40 | 71.97 | 71.25 | 67.79 | 76.80 | 74.59 |
高尔夫球场 | 82.38 | 78.27 | 78.60 | 79.52 | 82.03 | 83.97 | 82.56 | 82.49 |
体育场 | 76.12 | 54.53 | 68.40 | 62.56 | 66.97 | 58.01 | 65.11 | 66.73 |
收费站 | 53.19 | 54.15 | 62.80 | 74.58 | 79.36 | 69.01 | 63.60 | 78.01 |
机场 | 82.85 | 79.35 | 77.00 | 85.25 | 85.53 | 87.33 | 88.24 | 87.48 |
烟囱 | 76.35 | 74.11 | 73.20 | 77.99 | 79.53 | 82.51 | 82.77 | 78.27 |
服务区 | 74.09 | 69.24 | 78.60 | 87.88 | 87.94 | 90.07 | 88.57 | 88.96 |
田径场 | 68.35 | 70.93 | 76.60 | 82.73 | 82.03 | 82.66 | 81.93 | 83.37 |
立交桥 | 55.79 | 53.94 | 59.60 | 62.56 | 63.02 | 60.51 | 61.66 | 63.34 |
篮球场 | 87.24 | 86.08 | 85.00 | 88.89 | 87.57 | 87.11 | 89.20 | 89.49 |
桥梁 | 30.45 | 32.43 | 44.10 | 48.22 | 49.24 | 47.50 | 45.65 | 49.39 |
风车 | 49.08 | 74.48 | 85.50 | 85.46 | 86.23 | 84.78 | 83.85 | 86.96 |
港口 | 53.30 | 49.39 | 49.90 | 63.06 | 64.97 | 63.90 | 63.86 | 64.25 |
棒球场 | 73.38 | 77.24 | 69.30 | 83.19 | 83.98 | 76.77 | 74.44 | 82.54 |
飞机 | 52.45 | 68.76 | 53.30 | 76.60 | 79.13 | 80.41 | 77.63 | 79.00 |
网球场 | 77.42 | 84.27 | 81.30 | 89.74 | 89.55 | 90.39 | 91.32 | 90.05 |
贮罐 | 24.33 | 46.85 | 45.80 | 68.32 | 69.15 | 65.61 | 72.14 | 69.71 |
车辆 | 12.14 | 34.03 | 44.40 | 49.18 | 50.56 | 45.60 | 46.10 | 49.67 |
船舶 | 16.08 | 57.07 | 71.10 | 86.04 | 87.45 | 83.80 | 87.89 | 86.49 |
APf | 17.52 | 45.98 | 53.77 | 67.85 | 69.05 | 65.00 | 68.71 | 68.62 |
APc | 64.94 | 76.52 | 67.30 | 83.17 | 84.34 | 85.40 | 84.48 | 84.53 |
APr | 65.59 | 64.69 | 68.41 | 74.76 | 75.87 | 73.66 | 74.07 | 76.51 |
mAP | 58.39 | 63.07 | 66.11 | 74.57 | 75.69 | 73.54 | 74.31 | 76.13 |
FPS | 17.40 | 37.43 | 35.86 | 45.73 | 46.52 | 45.62 | 42.59 | 45.39 |
表5 DIOR数据集中不同检测算法各类别检测精度(%)
Table 5 Detection accuracy of different detection algorithms in DIOR dataset (%)
类别 | 方法 | |||||||
---|---|---|---|---|---|---|---|---|
Faster-RCNN[ | CenterNet[ | RetinaNet[ | YOLOv4[ | YOLOX-L[ | YOLOv5-L[ | YOLOv7-L[ | Ours | |
火车站 | 60.81 | 57.07 | 55.20 | 67.56 | 68.40 | 62.97 | 62.78 | 71.82 |
大坝 | 61.99 | 59.19 | 62.40 | 71.97 | 71.25 | 67.79 | 76.80 | 74.59 |
高尔夫球场 | 82.38 | 78.27 | 78.60 | 79.52 | 82.03 | 83.97 | 82.56 | 82.49 |
体育场 | 76.12 | 54.53 | 68.40 | 62.56 | 66.97 | 58.01 | 65.11 | 66.73 |
收费站 | 53.19 | 54.15 | 62.80 | 74.58 | 79.36 | 69.01 | 63.60 | 78.01 |
机场 | 82.85 | 79.35 | 77.00 | 85.25 | 85.53 | 87.33 | 88.24 | 87.48 |
烟囱 | 76.35 | 74.11 | 73.20 | 77.99 | 79.53 | 82.51 | 82.77 | 78.27 |
服务区 | 74.09 | 69.24 | 78.60 | 87.88 | 87.94 | 90.07 | 88.57 | 88.96 |
田径场 | 68.35 | 70.93 | 76.60 | 82.73 | 82.03 | 82.66 | 81.93 | 83.37 |
立交桥 | 55.79 | 53.94 | 59.60 | 62.56 | 63.02 | 60.51 | 61.66 | 63.34 |
篮球场 | 87.24 | 86.08 | 85.00 | 88.89 | 87.57 | 87.11 | 89.20 | 89.49 |
桥梁 | 30.45 | 32.43 | 44.10 | 48.22 | 49.24 | 47.50 | 45.65 | 49.39 |
风车 | 49.08 | 74.48 | 85.50 | 85.46 | 86.23 | 84.78 | 83.85 | 86.96 |
港口 | 53.30 | 49.39 | 49.90 | 63.06 | 64.97 | 63.90 | 63.86 | 64.25 |
棒球场 | 73.38 | 77.24 | 69.30 | 83.19 | 83.98 | 76.77 | 74.44 | 82.54 |
飞机 | 52.45 | 68.76 | 53.30 | 76.60 | 79.13 | 80.41 | 77.63 | 79.00 |
网球场 | 77.42 | 84.27 | 81.30 | 89.74 | 89.55 | 90.39 | 91.32 | 90.05 |
贮罐 | 24.33 | 46.85 | 45.80 | 68.32 | 69.15 | 65.61 | 72.14 | 69.71 |
车辆 | 12.14 | 34.03 | 44.40 | 49.18 | 50.56 | 45.60 | 46.10 | 49.67 |
船舶 | 16.08 | 57.07 | 71.10 | 86.04 | 87.45 | 83.80 | 87.89 | 86.49 |
APf | 17.52 | 45.98 | 53.77 | 67.85 | 69.05 | 65.00 | 68.71 | 68.62 |
APc | 64.94 | 76.52 | 67.30 | 83.17 | 84.34 | 85.40 | 84.48 | 84.53 |
APr | 65.59 | 64.69 | 68.41 | 74.76 | 75.87 | 73.66 | 74.07 | 76.51 |
mAP | 58.39 | 63.07 | 66.11 | 74.57 | 75.69 | 73.54 | 74.31 | 76.13 |
FPS | 17.40 | 37.43 | 35.86 | 45.73 | 46.52 | 45.62 | 42.59 | 45.39 |
图8 遥感图像检测中失败案例((a)失败案例1;(b)失败案例2;(c)失败案例3;(d)失败案例4)
Fig. 8 Problems in remote sensing image detection ((a) Failure case 1; (b) Failure case 2; (c) Failure case 3; (d) Failure case 4)
图9 实际检测效果图对比((a)背景相似场景;(b)多类别场景;(c)复杂场景;(d)小目标场景)
Fig. 9 Comparison of actual detection effects ((a) Similar background scenarios; (b) Multi-category scenes; (c) Complex scenes; (d) Small target scenes)
[1] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[2] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. |
[3] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. |
[4] | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 9626-9635. |
[5] | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 6568-6577. |
[6] | 胡俊, 顾晶晶, 王秋红. 基于遥感图像的多模态小目标检测[J]. 图学学报, 2022, 43(2): 197-204. |
HU J, GU J J, WANG Q H. Multimodal small target detection based on remote sensing image[J]. Journal of Graphics, 2022, 43(2): 197-204. (in Chinese) | |
[7] | 张燕, 高鑫, 刘以, 等. 基于改进像素相关性模型的图像分割算法[J]. 图学学报, 2022, 43(2): 205-213. |
ZHANG Y, GAO X, LIU Y, et al. Image segmentation algorithm based on improved pixel correlation model[J]. Journal of Graphics, 2022, 43(2): 205-213. (in Chinese) | |
[8] | LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO: small object detection on unmanned aerial vehicle perspective[J]. Sensors: Basel, Switzerland, 2020, 20(8): 2238. |
[9] |
YANG X, SUN H, SUN X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6: 50839-50849.
DOI URL |
[10] | YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 8231-8240. |
[11] | XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 3974-3983. |
[12] |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
DOI URL |
[13] |
CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.
DOI URL |
[14] |
BOTÍA J A, VANDROVCOVA J, FORABOSCO P, et al. An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks[J]. BMC Systems Biology, 2017, 11(1): 47.
DOI PMID |
[15] | ZHANG Y F, KANG B Y, HOOI B, et al. Deep long-tailed learning: a survey[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2110.04596. |
[16] | KIM J, JEONG J, SHIN J. M2m: imbalanced classification via major-to-minor translation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 13893-13902. |
[17] | TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[M]//Artificial Neural Networks and Machine Learning - ICANN 2018. Cham: Springer International Publishing, 2018: 270-279. |
[18] | YIN X, YU X, SOHN K, et al. Feature transfer learning for face recognition with under-represented data[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5697-5706. |
[19] | ZHOU B Y, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 9716-9725. |
[20] | CAI J R, WANG Y Z, HWANG J N. ACE: ally complementary experts for solving long-tailed recognition in one-shot[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 112-121. |
[21] | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 5375-5384. |
[22] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
DOI URL |
[23] | TAN J R, WANG C B, LI B Y, et al. Equalization loss for long-tailed object recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 11659-11668. |
[24] | CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 9260-9269. |
[25] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2004.10934. |
[26] | ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2104.11892. |
[27] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 6517-6525. |
[28] | 邓聪颖, 叶波, 苗建国, 等. 基于K-means++聚类与概率神经网络的数控机床变位姿动态特性模糊评估[J]. 仪器仪表学报, 2020, 41(12): 227-235. |
DENG C Y, YE B, MIAO J G, et al. Fuzzy evaluation of machine tool dynamic characteristics for changing machining position based on K-means + + clustering and probabilistic neural network[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 227-235. (in Chinese) | |
[29] | LI Y, WANG T, KANG B Y, et al. Overcoming classifier imbalance for long-tail object detection with balanced group softmax[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 10988-10997. |
[30] | GUPTA A, DOLLÁR P, GIRSHICK R. LVIS: a dataset for large vocabulary instance segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 5351-5359. |
[31] | GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2022-07-09]. https://arxiv.org/abs/2107.08430. |
[32] | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops. New York: IEEE Press, 2021: 2778-2788. |
[33] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2022-07-06]. https://arxiv.org/abs/2207.02696. |
[1] | 胡欣, 周运强, 肖剑, 杨杰. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437. |
[2] | 郝鹏飞, 刘立群, 顾任远. YOLO-RD-Apple果园异源图像遮挡果实检测模型[J]. 图学学报, 2023, 44(3): 456-464. |
[3] | 康厚良 , 杨玉婷 . 东巴象形文字文档图像的文本行自动分割算法研究[J]. 图学学报, 2022, 43(5): 865-874. |
[4] | 东辉, 陈鑫凯, 孙浩, 姚立纲. 基于改进 YOLOv4 和图像处理的蔬菜田杂草检测[J]. 图学学报, 2022, 43(4): 559-569. |
[5] | 陈昭俊, 储珺, 曾伦杰. 基于动态加权类别平衡损失的多类别口罩佩戴检测[J]. 图学学报, 2022, 43(4): 590-598. |
[6] | 范新南, 黄伟盛, 史朋飞, 辛元雪, 朱凤婷, 周润康. 基于改进 YOLOv4 的嵌入式变电站仪表检测算法[J]. 图学学报, 2022, 43(3): 396-403. |
[7] | 李玉珍, 陈辉, 王杰, 荣文 . 基于透视降采样和神经网络的地面标志检测[J]. 图学学报, 2022, 43(2): 288-295. |
[8] | 李妮妮, 王夏黎, 付阳阳, 郑凤仙, 何丹丹, 袁绍欣. 一种优化 YOLO 模型的交通警察目标检测方法[J]. 图学学报, 2022, 43(2): 296-305. |
[9] | 蒋镕圻, 彭月平, 谢文宣, 谢郭蓉. 嵌入 scSE 模块的改进 YOLOv4 小目标检测算法[J]. 图学学报, 2021, 42(4): 546-555. |
[10] | 叶泽聪 , 高志强 , 崔翛龙 , 蒋镕圻 , . 基于模型压缩的 YOLOV3 实时枪支识别方法[J]. 图学学报, 2021, 42(2): 198-205. |
[11] | 段丽丽, 原 达, 能昌信. 基于DTW 距离的探地雷达数据可视化[J]. 图学学报, 2015, 36(2): 152-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||