欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (3): 415-426.DOI: 10.11996/JG.j.2095-302X.2023030415

• 综述 • 上一篇    下一篇

基于机器学习的图案分类研究进展

边坤(), 梁慧   

  1. 内蒙古科技大学艺术与设计学院,内蒙古 包头 014010
  • 收稿日期:2022-09-05 接受日期:2023-01-19 出版日期:2023-06-30 发布日期:2023-06-30
  • 作者简介:

    边坤(1982-),女,副教授,硕士。主要研究方向为用户体验设计、图形信息设计和神经网络。E-mail:41915024@qq.com

Research progress of pattern classification based on machine learning

BIAN Kun(), LIANG Hui   

  1. School of Art and Design, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
  • Received:2022-09-05 Accepted:2023-01-19 Online:2023-06-30 Published:2023-06-30
  • About author:

    BIAN Kun (1982-), associate professor, master. Her main research interests cover user experience design, graphic information design and neural network. E-mail:41915024@qq.com

摘要:

回顾国内外结合机器学习进行图案分类的有关研究,从研究方法、文献数据分析、图案分类以及机器学习应用层面进行系统的梳理,了解目前国内外的研究现状以及研究进展,总结图案分类的方法以及不足之处,并对今后的发展进行展望,为更深入的探索提供参考。以大量文献研究为基础,运用CiteSpace软件分析当前的研究热点及趋势,并详细对数据集构建、数据处理、特征提取和图案分类所使用的方法、经典模型以及机器学习在图案分类中的运用进行分析和总结。图案分类研究有从传统人工分类向机器分类转变的趋势;准确高效的获取目标图案特征可有效改善分类效果;图案分类研究存在数据库匮乏问题,不利于对图案分类的深入研究。通过智能化分类方法构建系统的图案数据库;并将分类技术运用于服务系统平台,实现图案活态化传承;在分类的基础上,结合各种组合算法进行图案的创新设计,推动图案的进一步发展。

关键词: CiteSpace, 可视化分析, 研究热点与趋势, 图案分类, 机器学习

Abstract:

This paper presented a review of the research on pattern classification combined with machine learning at home and abroad. The study systematically sorted out the research methods, literature data analysis, pattern classification and machine learning applications, aiming to understand the current research status and research progress at home and abroad. This paper also summarized the methods and shortcomings of pattern classification and looked forward to the future development, providing reference for further exploration. Based on a large number of literature studies, CiteSpace software was employed to analyze the current research hotspots and trends. The methods, classical models, and the application of machine learning in pattern classification used in dataset construction, data processing, feature extraction, and pattern classification were analyzed and summarized in detail. The pattern classification research had a tendency of evolving from traditional manual classification to machine classification. The accurate and efficient acquisition of target pattern features can effectively improve the classification effect. There is a lack of databases in pattern classification research, which hinders the in-depth study of pattern classification. The systematic pattern database can be constructed by intelligent classification methods. The classification technology can be applied to the service system platform to realize the living inheritance of patterns. On the basis of classification, combined with various combination algorithms, innovative design of patterns can be carried out to promote the further development of patterns.

Key words: CiteSpace, visual analysis, research hotspots and trends, pattern classification, machine learning

中图分类号: