图学学报 ›› 2023, Vol. 44 ›› Issue (3): 415-426.DOI: 10.11996/JG.j.2095-302X.2023030415
收稿日期:
2022-09-05
接受日期:
2023-01-19
出版日期:
2023-06-30
发布日期:
2023-06-30
作者简介:
边坤(1982-),女,副教授,硕士。主要研究方向为用户体验设计、图形信息设计和神经网络。E-mail:41915024@qq.com
Received:
2022-09-05
Accepted:
2023-01-19
Online:
2023-06-30
Published:
2023-06-30
About author:
BIAN Kun (1982-), associate professor, master. Her main research interests cover user experience design, graphic information design and neural network. E-mail:41915024@qq.com
摘要:
回顾国内外结合机器学习进行图案分类的有关研究,从研究方法、文献数据分析、图案分类以及机器学习应用层面进行系统的梳理,了解目前国内外的研究现状以及研究进展,总结图案分类的方法以及不足之处,并对今后的发展进行展望,为更深入的探索提供参考。以大量文献研究为基础,运用CiteSpace软件分析当前的研究热点及趋势,并详细对数据集构建、数据处理、特征提取和图案分类所使用的方法、经典模型以及机器学习在图案分类中的运用进行分析和总结。图案分类研究有从传统人工分类向机器分类转变的趋势;准确高效的获取目标图案特征可有效改善分类效果;图案分类研究存在数据库匮乏问题,不利于对图案分类的深入研究。通过智能化分类方法构建系统的图案数据库;并将分类技术运用于服务系统平台,实现图案活态化传承;在分类的基础上,结合各种组合算法进行图案的创新设计,推动图案的进一步发展。
中图分类号:
边坤, 梁慧. 基于机器学习的图案分类研究进展[J]. 图学学报, 2023, 44(3): 415-426.
BIAN Kun, LIANG Hui. Research progress of pattern classification based on machine learning[J]. Journal of Graphics, 2023, 44(3): 415-426.
序号 | 出现频次 | 关键词 | 中介中心性 | 出现年 |
---|---|---|---|---|
1 | 64 | 深度学习 | 0.40 | 2007 |
2 | 42 | 迁移学习 | 0.12 | 1990 |
3 | 14 | 特征提取 | 0.19 | 2008 |
4 | 6 | 特征融合 | 0.11 | 2008 |
5 | 9 | 神经网络 | 0.09 | 2007 |
表1 中文关键词中心性排名
Table 1 Chinese keyword centrality ranking
序号 | 出现频次 | 关键词 | 中介中心性 | 出现年 |
---|---|---|---|---|
1 | 64 | 深度学习 | 0.40 | 2007 |
2 | 42 | 迁移学习 | 0.12 | 1990 |
3 | 14 | 特征提取 | 0.19 | 2008 |
4 | 6 | 特征融合 | 0.11 | 2008 |
5 | 9 | 神经网络 | 0.09 | 2007 |
序号 | 出现频次 | 关键词 | 中介中心性 | 出现年 |
---|---|---|---|---|
1 | 130 | deep learning | 0.27 | 2015 |
2 | 81 | neuralnetwork | 0.14 | 2017 |
3 | 77 | classification | 0.39 | 2015 |
4 | 42 | feature extraction | 0.24 | 2018 |
5 | 41 | neural network | 0.15 | 2017 |
表2 外文关键词中心性排名
Table 2 Ranking of foreign language keyword centrality
序号 | 出现频次 | 关键词 | 中介中心性 | 出现年 |
---|---|---|---|---|
1 | 130 | deep learning | 0.27 | 2015 |
2 | 81 | neuralnetwork | 0.14 | 2017 |
3 | 77 | classification | 0.39 | 2015 |
4 | 42 | feature extraction | 0.24 | 2018 |
5 | 41 | neural network | 0.15 | 2017 |
经典网络模型 | 时间(年) | 优势 | 不足 |
---|---|---|---|
AlexNet | 2012 | 以ReLu激活函数替代Sigmoid函数, 避免梯度消失,加快收敛速度, Dropout降低过拟合,泛化能力增强 | 对所需训练的数据量需求较大, 易造成计算量大的问题、 结构层深度增加易引起过拟合、梯度消失或爆炸 |
VGGNet | 2014 | 使用小卷积核代替大卷积核, 网络模型结构更深、 更宽,表现效果更好 | 相比AlexNet需要更大的数据量, 训练耗费时间较长、深度增加易引起过拟合、 梯度消失或爆炸 |
GoogleNet | 2015 | Inception结构使模型加深、 加宽的同时稀疏连接可减少参数以及计算量、 密集矩阵实现高计算性能 | 网络深度增加不利于模型的收敛 |
ResNet | 2016 | 残差连接使模型结构更深、性能更强更高效; 通道数增加利于高级特征的获取 | 特征过度重用,特征冗余 |
DenseNet | 2017 | 拓展网络连接、信息流最大化、 增强信息传播、 参数量减少、支持特征重用 | 训练耗费时间较长,在小样本情况下容易过拟合 |
表3 经典网络模型分析
Table 3 Analysis of classical network model
经典网络模型 | 时间(年) | 优势 | 不足 |
---|---|---|---|
AlexNet | 2012 | 以ReLu激活函数替代Sigmoid函数, 避免梯度消失,加快收敛速度, Dropout降低过拟合,泛化能力增强 | 对所需训练的数据量需求较大, 易造成计算量大的问题、 结构层深度增加易引起过拟合、梯度消失或爆炸 |
VGGNet | 2014 | 使用小卷积核代替大卷积核, 网络模型结构更深、 更宽,表现效果更好 | 相比AlexNet需要更大的数据量, 训练耗费时间较长、深度增加易引起过拟合、 梯度消失或爆炸 |
GoogleNet | 2015 | Inception结构使模型加深、 加宽的同时稀疏连接可减少参数以及计算量、 密集矩阵实现高计算性能 | 网络深度增加不利于模型的收敛 |
ResNet | 2016 | 残差连接使模型结构更深、性能更强更高效; 通道数增加利于高级特征的获取 | 特征过度重用,特征冗余 |
DenseNet | 2017 | 拓展网络连接、信息流最大化、 增强信息传播、 参数量减少、支持特征重用 | 训练耗费时间较长,在小样本情况下容易过拟合 |
[1] | 刘则渊, 陈悦, 侯海燕. 科学知识图谱: 方法与应用[M]. 北京: 人民出版社, 2008: 1. |
LIU Z Y, CHEN Y, HOU H Y. Mapping knowledge domains: methods and application[M]. Beijing: People's Publishing House, 2008: 1. (in Chinese) | |
[2] |
何晓萍, 黄龙. 大数据领域演进路径、研究热点与前沿的可视化分析[J]. 现代情报, 2015, 35(4): 46-51.
DOI |
HE X P, HUANG L. Visualization analysis of evolution path, research hotspots and frontiers of big data[J]. Journal of Modern Information, 2015, 35(4): 46-51. (in Chinese) | |
[3] | 张宗登, 游天梅, 张红颖. 中国苗族服饰研究热点及发展趋势: 基于CNKI数据的可视化研究[J]. 湖南包装, 2022, 37(1): 22-26, 36. |
ZHANG Z D, YOU T M, ZHANG H Y. Research hotspots and development trends of Chinese Miao costumes: based on CiteSpace visual analysis[J]. Hunan Packaging, 2022, 37(1): 22-26, 36. (in Chinese) | |
[4] | 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2008: 93. |
LI J, CHEN C M. CiteSpace: scientific text mining and visualization[M]. Beijing: Capital University of Economics and Business Press, 2008: 93. | |
[5] | 殷燕, 刘军平. 国内副文本研究三十年(1986—2016): 基于CiteSpace的科学计量分析[J]. 上海翻译, 2017(4): 22-26, 94. |
YIN Y, LIU J P. Paratextual studies in China(1986—2016): a scientometric analysis by using CiteSpace[J]. Shanghai Journal of Translators, 2017(4): 22-26, 94. (in Chinese) | |
[6] | 张志宇. 基于深度学习的民族图案的识别[D]. 长春: 吉林大学, 2019. |
ZHANG Z Y. Recognition of national patterns based on deep learning[D]. Changchun: Jilin University, 2019. (in Chinese) | |
[7] | CHU W T, WU Y L. Deep correlation features for image style classification[C]// The 24th ACM International Conference on Multimedia. New York: ACM, 2016: 402-406. |
[8] | 周惠怡, 刘颂凯, 张磊, 等. 考虑误分类约束的电力系统暂态稳定评估[J]. 电力系统及其自动化学报, 2022, 34(6): 71-78. |
ZHOU H Y, LIU S K, ZHANG L, et al. Transient stability assessment for power system considering misclassification constraints[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 71-78. (in Chinese) | |
[9] | 杨秀芹, 张华熊. 双核压缩激活神经网络艺术图像分类[J]. 中国图象图形学报, 2020, 25(5): 967-976. |
YANG X Q, ZHANG H X. Art image classification with double kernel squeeze-and-excitation neural network[J]. Journal of Image and Graphics, 2020, 25(5): 967-976. (in Chinese) | |
[10] | 杨冰. 基于艺术风格的绘画图像分类研究[D]. 杭州: 浙江大学, 2013. |
YANG B. Research on painting image classification based on aesthetic style[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) | |
[11] | 周长敏, 佘佐明, 吴安丽. 基于卷积神经网络的蜡染纹样分类[J]. 现代计算机, 2021(22): 117-121. |
ZHOU C M, SHE Z M, WU A L. Classification of indigo batik pattern based on convolutional neural networks[J]. Modern Computer, 2021(22): 117-121. (in Chinese) | |
[12] |
AZHAR R, TUWOHINGIDE D, KAMUDI D, et al. Batik image classification using SIFT feature extraction, bag of features and support vector machine[J]. Procedia Computer Science, 2015, 72: 24-30.
DOI URL |
[13] | 周长春. 美术作品检索与分类研究[D]. 杭州: 浙江大学, 2015. |
ZHOU C C. Art works retrieval and classification[D]. Hangzhou: Zhejiang University, 2015. (in Chinese) | |
[14] | 黎克, 钱文华, 王成学, 等. 基于图神经网络的东巴画小样本分类[J]. 计算机辅助设计与图形学学报, 2021, 33(7): 1073-1083. |
LI K, QIAN W H, WANG C X, et al. Dongba painting few-shot classification based on graph neural network[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(7): 1073-1083. (in Chinese) | |
[15] | 钱文华, 徐丹, 徐瑾, 等. 基于信息熵的风格绘画分类研究[J]. 图学学报, 2019, 40(6): 991-999. |
QIAN W H, XU D, XU J, et al. Artistic paintings classification based on information entropy[J]. Journal of Graphics, 2019, 40(6): 991-999. (in Chinese) | |
[16] |
JIANG S Q, HUANG Q M, YE Q X, et al. An effective method to detect and categorize digitized traditional Chinese paintings[J]. Pattern Recognition Letters, 2006, 27(7): 734-746.
DOI URL |
[17] | CONDOROVICI R, FLOREA C, VRÂNCEANU R, et al. Perceptually-inspired artistic genre identification system in digitized painting collections[C]// The 18th Scandinavian Conference on Image Analysis. Cham: Springer International Publishin, 2013: 687-696. |
[18] |
GILCHRIST A, KOSSYFIDIS C, BONATO F, et al. An anchoring theory of lightness perception[J]. Psychological Review, 1999, 106(4): 795-834.
PMID |
[19] |
KUMAR P, YILDIRIM E A. Minimum-volume enclosing ellipsoids and core sets[J]. Journal of Optimization Theory and Applications, 2005, 126(1): 1-21.
DOI URL |
[20] |
GRIGORESCU S E, PETKOV N, KRUIZINGA P. Comparison of texture features based on Gabor filters[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2002, 11(10): 1160-1167.
DOI URL |
[21] | 王子翔. 基于VGG19的迪庆藏族装饰图案特征提取系统设计与应用[D]. 昆明: 昆明理工大学, 2021. |
WANG Z X. Design and application of Diqing Tibetan decorative pattern feature extraction system based on VGG19[D]. Kunming: Kunming University of Science and Technology, 2021. (in Chinese) | |
[22] |
白茹意, 郭小英, 贾春花. 基于特征融合的小样本抽象画图像情感预测[J]. 计算机应用, 2020, 40(8): 2207-2213.
DOI |
BAI R Y, GUO X Y, JIA C H. Sentiment prediction of small sample abstract painting image based on feature fusion[J]. Journal of Computer Applications, 2020, 40(8): 2207-2213. (in Chinese)
DOI |
|
[23] |
ZHENG G, WANG B Z, SUN Y C, et al. Study on the traditional pattern retrieval method of minorities in Gansu Province[J]. IOP Conference Series: Materials Science and Engineering, 2018, 322: 052049.
DOI URL |
[24] | 杨秀芹. 基于深度学习的艺术图像分类算法研究[D]. 杭州: 浙江理工大学, 2020. |
YANG X Q. Research on the art image classification algorithm based on deep learning[D]. Hangzhou: Zhejiang Sci-Tech University, 2020. (in Chinese) | |
[25] | 范涛, 王昊, 李跃艳, 等. 基于多模态融合的非遗图片分类研究[J]. 数据分析与知识发现, 2022, 6(S1): 329-337. |
FAN T, WANG H, LI Y Y, et al. Classifying images of intangible cultural heritages with multimodal fusion[J]. Data Analysis and Knowledge Discovery, 2022, 6(S1): 329-337. (in Chinese) | |
[26] | KARNEWAR A, KANAWADAY A, SAWANT C, et al. Classification of abstract images using machine learning[C]// 2017 International Conference on Deep Learning Technologies. New York: ACM, 2017: 36-40. |
[27] | 孔谦, 史卓, 冯业, 等. 瑶族纹样符号的智能分类方法[J]. 包装工程, 2021, 42(10): 244-250. |
KONG Q, SHI Z, FENG Y, et al. The intelligent classification method of Yao patterns[J]. Packaging Engineering, 2021, 42(10): 244-250. (in Chinese) | |
[28] | 陈玉红, 刘晓静. 基于卷积神经网络的唐卡尊像自动分类研究[J]. 计算机技术与发展, 2021, 31(12): 167-174. |
CHEN Y H, LIU X J. Research on automatic classification of thangka images based on convolutional neural network[J]. Computer Technology and Development, 2021, 31(12): 167-174. (in Chinese) | |
[29] |
WANG T J, WANG W L. Research on a thangka image classification method based on support vector machine[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(12): 1954030.
DOI URL |
[30] |
YANG Z H. Classification of picture art style based on VGGNET[J]. Journal of Physics: Conference Series, 2021, 1774(1): 012043.
DOI |
[31] |
盛家川, 陈雅琦, 王君, 等. 融合人类认知网络优化的中国画情感识别[J]. 模式识别与人工智能, 2020, 33(2): 141-149.
DOI |
SHENG J C, CHEN Y Q, WANG J, et al. Chinese paintings sentiment recognition via CNN optimization with human cognition[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(2): 141-149. (in Chinese)
DOI |
|
[32] | 潘森垒, 钱文华, 曹进德, 等. 基于注意力机制的东巴画情感分类[J]. 图学学报, 2023, 44(1): 59-66. |
PAN S L, QIAN W H, CAO J D, et al. Learning attention for Dongba paintings emotion classification[J]. Journal of Graphics, 2023, 44(1): 59-66. (in Chinese) | |
[33] |
CETINIC E, LIPIC T, GRGIC S. Fine-tuning convolutional neural networks for fine art classification[J]. Expert Systems With Applications, 2018, 114: 107-118.
DOI URL |
[34] |
HIARY H, SAADEH H, SAADEH M, et al. Flower classification using deep convolutional neural networks[J]. IET Computer Vision, 2018, 12(6): 855-862.
DOI URL |
[35] | 谭晓明. 图案艺术中“形”与中国绘画中“神”之刍析[J]. 文化学刊, 2018(2): 220-223. |
TAN X M. On “form” in pattern art and “God” in China’s painting[J]. Culture Journal, 2018(2): 220-223. (in Chinese) | |
[36] | 高友文, 周本君, 胡晓飞. 基于数据增强的卷积神经网络图像识别研究[J]. 计算机技术与发展, 2018, 28(8): 62-65. |
GAO Y W, ZHOU B J, HU X F. Research on image recognition of convolution neural network based on data enhancement[J]. Computer Technology and Development, 2018, 28(8): 62-65. (in Chinese) | |
[37] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-05-29]. https://arxiv.org/abs/1409.1556. |
[38] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1-9. |
[39] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[40] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 2261-2269. |
[41] | 陆健强, 林佳翰, 黄仲强, 等. 基于Mixup算法和卷积神经网络的柑橘黄龙病果实识别研究[J]. 华南农业大学学报, 2021, 42(3): 94-101. |
LU J Q, LIN J H, HUANG Z Q, et al. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network[J]. Journal of South China Agricultural University, 2021, 42(3): 94-101. (in Chinese) | |
[42] | 赵含笑. 基于深度学习的刺绣图像分类与识别研究[D]. 西宁: 青海师范大学, 2020. |
ZHAO H X. Classification and recognition algorithm of embroidery images based on deep learning[D]. Xining: Qinghai Normal University, 2020. (in Chinese) | |
[43] | 贾小军, 邓洪涛, 刘子豪, 等. 基于VGGNet卷积神经网络的蓝印花布纹样分类[J]. 光电子·激光, 2019, 30(8): 867-875. |
JIA X J, DENG H T, LIU Z H, et al. Vein pattern classification based on VGGNet convolutional neural network for blue calico[J]. Journal of Optoelectronics· Laser, 2019, 30(8): 867-875. (in Chinese) | |
[44] | 贾小军, 叶利华, 邓洪涛, 等. 基于卷积神经网络的蓝印花布纹样分类[J]. 纺织学报, 2020, 41(1): 110-117. |
JIA X J, YE L H, DENG H T, et al. Elements classification of vein patterns using convolutional neural networks for blue calico[J]. Journal of Textile Research, 2020, 41(1): 110-117. (in Chinese) | |
[45] |
KELEK M O, CALIK N, YILDIRIM T. Painter classification over the novel art painting data set via the latest deep neural networks[J]. Procedia Computer Science, 2019, 154: 369-376.
DOI URL |
[46] |
YANG H, MIN K. Classification of basic artistic media based on a deep convolutional approach[J]. The Visual Computer, 2020, 36(3): 559-578.
DOI |
[1] | 胡志明, 李胜, 盖孟. 用户任务预测研究进展与算法分析[J]. 图学学报, 2021, 42(3): 367-375. |
[2] | 刘 昶, 徐超远, 张 鑫, 薛 磊. 液晶字符识别的 CNN 和 SVM 组合分类器[J]. 图学学报, 2021, 42(1): 15-22. |
[3] | 李振波 1,2,3, 杨晋琪 1, 岳 峻 4 . 基于协同回归模型的矩阵分解推荐[J]. 图学学报, 2019, 40(6): 983-990. |
[4] | 杜淑幸, 彭丽萍, 连立麟. 基于CiteSpace 计量分析的国外工业设计研究现状[J]. 图学学报, 2017, 38(6): 876-880. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||