欢迎访问《图学学报》 分享到:

图学学报 ›› 2024, Vol. 45 ›› Issue (3): 422-432.DOI: 10.11996/JG.j.2095-302X.2024030422

• 图像处理与计算机视觉 • 上一篇    下一篇

基于轻量化YOLOv8s交通标志的检测

朱强军1(), 胡斌1, 汪慧兰2, 王杨3()   

  1. 1.安徽师范大学皖江学院大数据与人工智能系,安徽 芜湖 241000
    2.安徽师范大学物理与电子信息学院,安徽 芜湖 241000
    3.安徽师范大学计算机与信息学院,安徽 芜湖 241000
  • 收稿日期:2023-10-17 接受日期:2024-01-09 出版日期:2024-06-30 发布日期:2024-06-06
  • 通讯作者:王杨(1972-),男,教授,博士。主要研究方向为人工智能系统和机器视觉。E-mail:wycap@126.com
  • 第一作者:朱强军(1984-),男,副教授,硕士。主要研究方向为智能算法、模式识别和数学建模。E-mail:zhuqiangjun@ahnu.edu.cn
  • 基金资助:
    安徽省高校自然科学研究重点项目(2023AH052459);安徽师范大学皖江学院重点自然科研项目(WJKYZD-202301);安徽省高等学校省级质量工程项目(2022sx052);安徽师范大学皖江学院教学质量工程项目(WJXGK-202201)

Detection of traffic signs based on lightweight YOLOv8s

ZHU Qiangjun1(), HU Bin1, WANG Huilan2, WANG Yang3()   

  1. 1. Department of Big Data and Artificial Intelligence, Wanjiang College of Anhui Normal University, Wuhu Anhui 241000, China
    2. School of Physics and Electronic Information, Anhui Normal University, Wuhu Anhui 241000, China
    3. School of Computer and Information, Anhui Normal University, Wuhu Anhui 241000, China
  • Received:2023-10-17 Accepted:2024-01-09 Published:2024-06-30 Online:2024-06-06
  • First author:ZHU Qiangjun (1984-), associate professor, master. His main research interests cover intelligent algorithm, pattern recognition and mathematical modeling. E-mail:zhuqiangjun@ahnu.edu.cn
  • Supported by:
    Key Natural Science Research Project of Universities in Anhui Province(2023AH052459);Key Natural Science Research Project of Wanjiang College of Anhui Normal University(WJKYZD-202301);Provincial Quality Engineering Project of Higher Education Institutions in Anhui Province(2022sx052);Teaching Quality Project of Wanjiang College of Anhui Normal University(WJXGK-202201)

摘要:

为了提高交通标志检测的实时性和可行性,提出了一种基于YOLOv8s的轻量化交通标志检测模型。首先,用FasterNet中的残差模块FasterNetBlock替换C2f模块中的BottleNeck,降低模型参数量和计算量;其次,用一种小目标检测层去替换大目标检测层,降低Backbone中网络层数,实现大幅度提高检测速度和降低参数量;最后,用Wise-IOU替换原CIOU损失函数,提高速度和精度。在TT100K交通标志数据集上验证,其与YOLOv8s模型比较,mAP50提高了5.16%,参数量降低了76.48%,计算量降低了13.33%,FPS快了35.83%。与其他模型相比,mAP50平均提高了15.11%,参数量平均降低了85.74%,计算量平均下降了46.23%,FPS平均提高了31.49%。该模型具有检测精度高、参数量少、计算量低、速度快等优点,较原算法有很大地提升,且与其他先进的交通标志检测模型比较时表现出了很强的竞争力,在交通标志检测中具有较大优势。

关键词: 轻量化, YOLOv8s, 改进小目标层, 交通标志检测, Wise-IOU, TT100K

Abstract:

To enhance the real-time capability and feasibility of traffic sign detection, a lightweight traffic sign detection model based on YOLOv8s was proposed. Firstly, the BottleNeck in the C2f module was replaced with the residual module FasterNetBlock in FasterNet, reducing the model’s parameter count and computational complexity. Secondly, the large object detection layer was replaced with a small object detection layer, decreasing the number of network layers in Backbone and achieving a significant improvement in detection speed and a reduction in parameter count. Finally, the original complete intersection over union (CIOU) loss function was replaced with the wise intersection over union (Wise-IOU), thereby enhancing both speed and accuracy. Verified on the TT100K traffic sign dataset, compared with the YOLOv8s model, mAP50 increased by 5.16%, parameter count decreased by 76.48%, computational complexity decreased by 13.33%, and frames per second (FPS) improved by 35.83%. In comparison to other models, mAP50 exhibited an average increase of 15.11%, an average decrease of 85.74% in parameter count, an average decrease of 46.23% in computational complexity, and an average increase of 31.49% in FPS. This model achieved the advantages of high detection accuracy, small number of parameters, low computational complexity, and fast speed. It represented a substantial improvement over the original algorithm and demonstrated strong competitiveness when compared to other advanced traffic sign detection models, with great advantages in traffic sign detection.

Key words: lightweight, YOLOv8s, improved small target layer, traffic sign detection, Wise-IOU, TT100K

中图分类号: