[1] |
张彬彬, 帕孜来·马合木提. 基于YOLOv3改进的火焰目标检测算法[J]. 激光与光电子学进展, 2021, 58(24): 289-296.
|
|
ZHANG B B, PAZILAI M H M T. Improved flame target detection algorithm based on YOLOv3[J]. Laser & Optoelectronics Progress, 2021, 58(24): 289-296 (in Chinese).
|
[2] |
缪伟志, 陆兆纳, 王俊龙, 等. 基于视觉的火灾检测研究[J]. 森林工程, 2022, 38(1): 86-92, 100.
|
|
MIAO W Z, LU Z N, WANG J L, et al. Fire detection research based on vision[J]. Forest Engineering, 2022, 38(1): 86-92, 100 (in Chinese).
|
[3] |
DONG X D, YAN S, DUAN C Q. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104914.
DOI
URL
|
[4] |
CHEN Z C, YANG J, CHEN L F, et al. Garbage classification system based on improved ShuffleNet v2[J]. Resources, Conservation and Recycling, 2022, 178: 106090.
DOI
URL
|
[5] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
DOI
URL
|
[6] |
刘凯, 魏艳秀, 许京港, 等. 基于计算机视觉的森林火灾识别算法设计[J]. 森林工程, 2018, 34(4): 89-95.
|
|
LIU K, WEI Y X, XU J G, et al. Design of forest fire identification algorithm based on computer vision full text replacement[J]. Forest Engineering, 2018, 34(4): 89-95 (in Chinese).
|
[7] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
DOI
URL
|
[8] |
PERRONNIN F, SÁNCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[M]//Computer Vision - ECCV 2010. Cham: Springer International Publishin, 2010: 143-156.
|
[9] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 1-9.
|
[10] |
仲亭玉, 刘文萍, 刘鹏举. 基于分数阶微分视频融合的森林烟火检测算法[J]. 北京林业大学学报, 2017, 39(3): 24-31.
|
|
ZHONG T Y, LIU W P, LIU P J. A forest fire smoke detection algorithm based on fractional-calculus video fusion[J]. Journal of Beijing Forestry University, 2017, 39(3): 24-31 (in Chinese).
|
[11] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. New York: IEEE Press, 2017: 2999-3007.
|
[12] |
AVAZOV K, MUKHIDDINOV M, MAKHMUDOV F, et al. Fire detection method in smart city environments using a deep-learning-based approach[J]. Electronics, 2021, 11(1): 73.
DOI
URL
|
[13] |
LIU S T, ZHANG N N, YU G. Lightweight security wear detection method based on YOLOv5[EB/OL]. [2022-02-20]. https://dl.acm.org/doi/10.1155/2022/1319029.
|
[14] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
DOI
URL
|
[15] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
DOI
URL
|
[16] |
张苗, 李璞, 杨漪, 等. 基于目标检测卷积神经网络的图像型火灾探测算法[J]. 消防科学与技术, 2022, 41(6): 807-811.
|
|
ZHANG M, LI P, YANG Y, et al. Image fire detection algorithms based on object detection convolutional neural networks[J]. Fire Science and Technology, 2022, 41(6): 807-811 (in Chinese).
|
[17] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[J]. Proceedings of Computer Vision and Pattern Recognition, 2005, 1: 886-893.
|
[18] |
PERRONNIN F, SÁNCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[M]//Computer Vision - ECCV 2010. Cham: Springer International Publishin, 2010: 143-156.
|
[19] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[EB/OL]. [2022-01-12]. https://arxiv.org/abs/2103.02907.
|
[20] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI
PMID
|