图学学报
• 几何设计与计算 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 给出了两组带两个形状参数λ , μ 的六次多项式基函数,它们是四次 Bernstein 基函数的扩展。分析了这两组基函数的性质,基于这两组基分别定义了带形状参数 的两类多项式曲线,两类曲线具有与四次Bézier 曲线类似的性质,且在控制顶点不变的情 况下,可通过改变形状参数的值实现对曲线形状的调整。参数λ, μ 具有明显的几何意义。当 λ =μ = 0 时,均退化为四次Bézier 曲线。实例表明,论文所采用的方法控制灵活,方便有效。
关键词: 曲线设计, 四次Bé, zier 曲线, 形状参数
Abstract: Two classes of six degree polynomial basis functions with two shape control parameters λ and μ are presented. They are extensions of quartic Bernstein basis functions. Properties of these two bases are analyzed and the corresponding polynomial curves with two parameters λ and μ are defined accordingly. These curves not only inherit the outstanding properties of quartic Bézier curve, but also can be adjusted in shape by changing the value of λ and μ without the changing of control points. The parameters have obvious geometric meaning. When λ =μ =0, the curve degenerates to four degree Bézier curve. Experiments show that the method given in this paper is intuitive, effective and easy to control.
Key words: curve design, quartic Bézier curve, shape parameters
刘小琼, 杨国英. 带两个形状参数的四次Bézier 曲线的扩展[J]. 图学学报.
Liu Xiaoqiong,Yang Guoying. Extension of quartic Bézier curve with two shape parameters[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2013/V34/I1/41