[1] |
DREWES H, KHAMIS M, ALT F. Smooth pursuit target speeds and trajectories[C]// The 17th International Conference on Mobile and Ubiquitous Multimedia. New York: ACM, 2018: 139-146.
|
[2] |
NIU Y F, LI X, YANG W J, et al. Smooth pursuit study on an eye-control system for continuous variable adjustment tasks[J]. International Journal of Human-Computer Interaction, 2023, 39(1): 23-33.
|
[3] |
ALORAINI S M, GLAZEBROOK C M, SIBLEY K M, et al. Anticipatory postural adjustments during a Fitts' task: comparing young versus older adults and the effects of different foci of attention[J]. Human Movement Science, 2019, 64: 366-377.
DOI
PMID
|
[4] |
朱潇潇. 基于眼势的眼控界面交互设计研究[D]. 南京: 东南大学, 2019.
|
|
ZHU X X. Eye-controlled interface interaction design and research based on eye gesture[D]. Nanjing: Southeast University, 2019 (in Chinese).
|
[5] |
周小舟, 宗承龙, 郭一冰, 等. 多模态交互中的目标选择技术[J]. 包装工程, 2022, 43(4): 36-44.
|
|
ZHOU X Z, ZONG C L, GUO Y B, et al. A review of target selection techniques in multimodal interaction[J]. Packaging Engineering, 2022, 43(4): 36-44 (in Chinese).
|
[6] |
MROTEK L A, FLANDERS M, SOECHTING J F. Oculomotor responses to gradual changes in target direction[J]. Experimental Brain Research, 2006, 172(2): 175-192.
DOI
PMID
|
[7] |
KOWLER E, MCKEE S P. Sensitivity of smooth eye movement to small differences in target velocity[J]. Vision Research, 1987, 27(6): 993-1015.
PMID
|
[8] |
WOODWORTH R S. Accuracy of voluntary movement[J]. The Psychological Review: Monograph Supplements, 1899, 3(3): 1-106.
|
[9] |
LISBERGER S G, MORRIS E J, TYCHSEN L. Visual motion processing and sensory-motor integration for smooth pursuit eye movements[J]. Annual Review of Neuroscience, 1987, 10: 97-129.
PMID
|
[10] |
FITTS P M. The information capacity of the human motor system in controlling the amplitude of movement[J]. Journal of Experimental Psychology, 1954, 47(6): 381-391.
PMID
|
[11] |
DENG C L, TIAN C Y, KUAI S G. A combination of eye-gaze and head-gaze interactions improves efficiency and user experience in an object positioning task in virtual environments[J]. Applied Ergonomics, 2022, 103: 103785.
|
[12] |
LEE S C, CHA M C, JI Y G. Investigating smartphone touch area with one-handed interaction: effects of target distance and direction on touch behaviors[J]. International Journal of Human-Computer Interaction, 2019, 35(16): 1532-1543.
|
[13] |
YEO A, KWOK B W J, JOSHNA A, et al. Entering the next dimension: a review of 3D user interfaces for virtual reality[J]. Electronics, 2024, 13(3): 600.
|
[14] |
COLLEY A, MAYER S, HENZE N. Investigating the effect of orientation and visual style on touchscreen slider performance[C]// 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2019: 189.
|
[15] |
NIU Y F, GAO Y, XUE C Q, et al. Improving eye-computer interaction interface design: ergonomic investigations of the optimum target size and gaze-triggering dwell time[J]. Journal of Eye Movement Research, 2020, 12(3): 8.
|
[16] |
HELMERT J R, PANNASCH S, VELICHKOVSKY B M. Influences of dwell time and cursor control on the performance in gaze driven typing[J]. Journal of Eye Movement Research, 2008, 2(4): 3.
|
[17] |
MEYER D E, ABRAMS R A, KORNBLUM S, et al. Optimality in human motor performance: ideal control of rapid aimed movements[J]. Psychological Review, 1988, 95(3): 340-370.
PMID
|
[18] |
LOVEJOY L P, FOWLER G A, KRAUZLIS R J. Spatial allocation of attention during smooth pursuit eye movements[J]. Vision Research, 2009, 49(10): 1275-1285.
DOI
PMID
|
[19] |
BANGOR A, KORTUM P T, MILLER J T. An empirical evaluation of the system usability scale[J]. International Journal of Human-Computer Interaction, 2008, 24(6): 574-594.
|
[20] |
GRIER R A, BANGOR A, KORTUM P, et al. The system usability scale: beyond standard usability testing[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2013, 57(1): 187-191.
|
[21] |
王尔卓, 袁翔, 李士岩. 智能家居场景中会话智能体主动交互设计研究[J]. 图学学报, 2020, 41(4): 658-666.
DOI
|
|
WANG E Z, YUAN X, LI S Y. Proactive interaction design of conversational agent for smart homes[J]. Journal of Graphics, 2020, 41(4): 658-666 (in Chinese).
|
[22] |
李晓英, 余亚平. 基于多模态感官体验的儿童音画交互设计研究[J]. 图学学报, 2022, 43(4): 736-744.
|
|
LI X Y, YU Y P. Research on interactive design of children's sound and painting based on multimodal sensory experience[J]. Journal of Graphics, 2022, 43(4): 736-744 (in Chinese).
|
[23] |
GEGENFURTNER K R, XING D J, SCOTT B H, et al. A comparison of pursuit eye movement and perceptual performance in speed discrimination[J]. Journal of Vision, 2003, 3(11): 865-876.
PMID
|
[24] |
MACKENZIE I S. Fitts' law as a research and design tool in human-computer interaction[J]. Human-Computer Interaction, 1992, 7(1): 91-139.
|
[25] |
MACKENZIE C L, MARTENIUK R G, DUGAS C, et al. Three-dimensional movement trajectories in Fitts' task: implications for control[J]. Quarterly Journal of Experimental Psychology, 1987, 39(4): 629-647.
|
[26] |
YAMADA Y, KOBAYASHI M. Fatigue detection model for older adults using eye-tracking data gathered while watching video: evaluation against diverse fatiguing tasks[C]// 2017 IEEE International Conference on Healthcare Informatics. New York: IEEE Press, 2017: 275-284.
|
[27] |
BARNES G R. Cognitive processes involved in smooth pursuit eye movements[J]. Brain and Cognition, 2008, 68(3): 309-326.
DOI
PMID
|
[28] |
SANTINI T, FUHL W, KÜBLER T, et al. Bayesian identification of fixations, saccades, and smooth pursuits[C]// The 9th Biennial ACM Symposium on Eye Tracking Research & Applications. New York: ACM, 2016: 163-170.
|
[29] |
POLETTI M, RUCCI M. A compact field guide to the study of microsaccades: challenges and functions[J]. Vision Research, 2016, 118: 83-97.
DOI
PMID
|
[30] |
SHARPE J A. Neurophysiology and neuroanatomy of smooth pursuit: lesion studies[J]. Brain and Cognition, 2008, 68(3): 241-254.
DOI
PMID
|
[31] |
VAN GELDER P, LEBEDEV S, LIU P M, et al. Anticipatory saccades in smooth pursuit: task effects and pursuit vector after saccades[J]. Vision Research, 1995, 35(5): 667-678.
PMID
|