欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (3): 510-519.DOI: 10.11996/JG.j.2095-302X.2025030510

• 图像处理与计算机视觉 • 上一篇    下一篇

DCSplat:一种深度约束的稀疏视角三维重建方法

黄志勇(), 佘雅丽, 华喜锋, 向梦丽, 杨晨龙, 丁妥君   

  1. 三峡大学计算机与信息技术学院,湖北 宜昌 443000
  • 收稿日期:2024-08-17 接受日期:2024-12-27 出版日期:2025-06-30 发布日期:2025-06-13
  • 第一作者:黄志勇(1979-),男,副教授,博士。主要研究方向为计算机视觉、计算机图形学。E-mail:hzy@hzy.org.cn
  • 基金资助:
    国家自然科学基金(62371271)

DCSplat: Gaussian splatting with depth information constraints under sparse viewpoints

HUANG Zhiyong(), SHE Yali, HUA Xifeng, XIANG Mengli, YANG Chenlong, DING Tuojun   

  1. College of Computer and Information Technology, China Three Gorges University, Yichang Hubei 443000, China
  • Received:2024-08-17 Accepted:2024-12-27 Published:2025-06-30 Online:2025-06-13
  • First author:HUANG Zhiyong (1979-), associate professor, Ph.D. His main research interests cover computer vision, computer graphics. E-mail:hzy@hzy.org.cn
  • Supported by:
    National Natural Science Foundation of China(62371271)

摘要:

针对稀疏视角三维重建中的挑战,尤其是高斯椭球数量不足引起的重建孔洞和精度衰减等问题,提出了一种深度约束的3D Gaussian splatting (3DGS)稀疏视角三维重建方法(DCSplat),利用深度约束自适应的补全3DGS初始化时所需的点云,设计了一种随机结构相似性损失,实现了稀疏视角图像的快速高精质量重建。其核心在于利用提出的前馈神经网络来完善SFM过程中产生的稀疏点云。首先,通过预训练的单目深度估计网络从图像中预测深度信息。其次,利用相机参数构建投影矩阵,将稀疏点云投影到图像上,建立点云z值与深度值关联关系,进一步构建和训练图像像素深度值与点云z值映射的深度神经网络,用于优化和补全3DGS所需的点云信息。再次,为克服3DGS逐点优化损失的局限性,引入了一种随机结构相似性损失函数,该函数将对应于像素的多个高斯视为整体来处理,能够全局考虑点云结构,促进更连贯和精确的三维重建。DCSplat在LLFF, DTU和MipNeRF360标准数据集上的测试结果表明,其在关键评价指标上,包括峰值信噪比(PSNR)、结构相似性(SSIM)以及学习感知图像块相似度(LPIPS),均达到甚至超越了现有方法的性能水平,能够有效提升重建质量。此外,该方法基于深度约束完成点云补全,从全局到局部利用深度信息优化重建质量,并在多项指标上表现出良好的性能提升,展现了一定的应用潜力。

关键词: 三维重建, 稀疏视角, DCSplat, 3DGS, 深度信息

Abstract:

To address the challenges in sparse-view 3D reconstruction, particularly reconstruction holes and accuracy degradation caused by insufficient Gaussians, a sparse-view 3D reconstruction method based on 3D Gaussian Splatting (3DGS) technology was proposed, namely DCSplat. This method utilized depth constraints to adaptively complete the point cloud required for 3DGS initialization and designed a random structural similarity loss to achieve fast and high-precision reconstruction of sparse-view images. The core of the method lay in the use of a proposed feedforward neural network to improve the sparse point cloud generated during the structure from motion (SFM) process. Firstly, a pre-trained monocular depth estimation network was used to predict depth information from the images. Secondly, a projection matrix was constructed using camera parameters to project the sparse point clouds onto the images, thereby establishing a correlation between point cloud’s z-values and depth values. Furthermore, a deep neural network was constructed and trained to map the depth values of image pixels to point cloud z-values, which was used to optimize and complete the point cloud information required for 3DGS. Additionally, to overcome the limitations of point-by-point optimization loss in 3DGS, a random structural similarity loss function was introduced, treating multiple Gaussians corresponding to pixels as a whole for processing. This enabled global consideration of the point cloud structure, thereby promoting more coherent and accurate 3D reconstruction. The test results of DCSplat on the local light field fusion (LLFF), large scale multi view stereotaxis evaluation (DTU), and unbounded anti aliasing neural radiance fields (MipNeRF360) standard datasets demonstrated that it achieved or even surpassed the performance level of existing methods on key evaluation indicators, including peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and learned perceptual image patch similarity (LPIPS), effectively improving the reconstruction quality. In addition, this method completed point cloud completion based on depth constraints, optimized reconstruction quality from global to local scales using depth information, and exhibited significant performance improvements across multiple indicators, thereby demonstrating certain application potential.

Key words: 3D reconstruction, sparse viewpoints, DCSplat, 3DGS, depth information

中图分类号: