[1] |
SHUM H, KANG S B. Review of image-based rendering techniques[EB/OL]. [2024-05-11]https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4067/1/Review-of-image-based-rendering-techniques/10.1117/12.386541.short.
|
[2] |
SCHMID K, HIRSCHMÜLLER H, DÖMEL A, et al. View planning for multi-view stereo 3D reconstruction using an autonomous multicopter[J]. Journal of Intelligent & Robotic Systems, 2012, 65(1/4): 309-323.
|
[3] |
ZHANG H, YAO Y C, XIE K, et al. Continuous aerial path planning for 3D urban scene reconstruction[J]. ACM Transactions on Graphics, 2021, 40(6): 225.
|
[4] |
ZHOU X H, XIE K, HUANG K, et al. Offsite aerial path planning for efficient urban scene reconstruction[J]. ACM Transactions on Graphics, 2020, 39(6): 192.
|
[5] |
SMITH N, MOEHRLE N, GOESELE M, et al. Aerial path planning for urban scene reconstruction: a continuous optimization method and benchmark[J]. ACM Transactions on Graphics, 2018, 37(6): 183.
|
[6] |
KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks and temples: benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 2017, 36(4): 78.
|
[7] |
SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of multi-view stereo reconstruction algorithms[C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 519-528.
|
[8] |
LIU Y L, LIN L Q, HU Y, et al. Learning reconstructability for drone aerial path planning[J]. ACM Transactions on Graphics, 2022, 41(6): 197.
|
[9] |
LEVOY M, HANRAHAN P. Light field rendering[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 31-42.
|
[10] |
GORTLER S J, GRZESZCZUK R, SZELISKI R, et al. The lumigraph[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 43-54.
|
[11] |
DEBEVEC P E, TAYLOR C J, MALIK J. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach[C]// The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 11-20.
|
[12] |
BUEHLER C, BOSSE M, MCMILLAN L, et al. Unstructured lumigraph rendering[C]// The 28th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2001: 425-432.
|
[13] |
HEDMAN P, RITSCHEL T, DRETTAKIS G, et al. Scalable inside-out image-based rendering[J]. ACM Transactions on Graphics, 2016, 35(6): 231.
|
[14] |
XU J M, WU X C, ZHU Z H, et al. Scalable image-based indoor scene rendering with reflections[J]. ACM Transactions on Graphics, 2021, 40(4): 60.
|
[15] |
HEDMAN P, PHILIP J, PRICE T, et al. Deep blending for free-viewpoint image-based rendering[J]. ACM Transactions on Graphics, 2018, 37(6): 257.
|
[16] |
RIEGLER G, KOLTUN V. Free view synthesis[C]// The 16th European Conference on Computer Vision. Cham: Springer, 2020: 623-640.
|
[17] |
RIEGLER G, KOLTUN V. Stable view synthesis[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 12211-12220.
|
[18] |
PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 165-174.
|
[19] |
YI Z M, XIE K, LYU J H, et al. Where to render: studying renderability for IBR of large-scale scenes[C]// 2023 IEEE Conference on Virtual Reality and 3D User Interfaces. New York: IEEE Press, 2023: 356-366.
|
[20] |
BOUCHENY C. Interactive scientific visualization of large datasets: towards a perceptive-based approach[D]. Grenoble: Université Joseph Fourier, 2009.
|
[21] |
BAVOIL L, SAINZ M. Screen space ambient occlusion[EB/OL]. (2008-09-01) [2024-10-03]https://developper.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf.
|
[22] |
LIN L Q, LIU Y L, HU Y, et al. Capturing, reconstructing, and simulating: the UrbanScene3D dataset[C]// The 17th European Conference on Computer Vision. Cham: Springer, 2022: 93-109.
|