欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (3): 588-601.DOI: 10.11996/JG.j.2095-302X.2025030588

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于CLIP语义偏移的三维点云可迁移攻击

马扬1(), 黄璐洁1, 彭伟龙2, 吴志泽3, 唐可可1(), 方美娥2   

  1. 1.广州大学网络空间先进技术研究院,广东 广州 510006
    2.广州大学计算机科学与网络工程学院,广东 广州 510006
    3.合肥大学人工智能与大数据学院,安徽 合肥 230601
  • 收稿日期:2024-09-30 接受日期:2024-12-17 出版日期:2025-06-30 发布日期:2025-06-13
  • 通讯作者:唐可可(1990-),男,副教授,博士。主要研究方向为计算机图形学、人工智能及安全。E-mail:tangbohutbh@gmail.com
  • 第一作者:马扬(1998-),男,硕士研究生。主要研究方向为计算机视觉安全。E-mail:gzhumayang@gmail.com
  • 基金资助:
    国家自然科学基金(62102105)

CLIP-based semantic offset transferable attacks on 3D point clouds

MA Yang1(), HUANG Lujie1, PENG Weilong2, WU Zhize3, TANG Keke1(), FANG Meie2   

  1. 1. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou Guangdong 510006, China
    2. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou Guangdong 510006, China
    3. School of Artificial Intelligence and Big Data, Hefei University, Hefei Anhui 230601, China
  • Received:2024-09-30 Accepted:2024-12-17 Published:2025-06-30 Online:2025-06-13
  • Contact: TANG Keke (1990-), associate professor, Ph.D. His main research interests cover computer graphics, artificial intelligence and security. E-mail:tangbohutbh@gmail.com
  • First author:MA Yang (1998-), master student. His main research interest covers computer vision security. E-mail:gzhumayang@gmail.com
  • Supported by:
    National Natural Science Foundation of China(62102105)

摘要:

基于深度学习的三维点云理解在自动驾驶、机器人和监控等各种应用中受到越来越多的关注,研究点云深度学习模型的对抗攻击,有助于评估和提高其对抗鲁棒性。然而,大多数现有攻击方法都是针对白盒攻击,生成的对抗样本对于未知模型参数的黑盒模型的迁移攻击成功率极低且易被防御。其只考虑在几何空间中优化来误导特定分类器,未能从本质上改变点云数据的深层内在语义结构,导致其在不同的分类器下迁移攻击能力有限。为了解决这些问题,提出了一种基于三维CLIP语义偏移攻击方法(3DCLAT),利用多模态大模型的丰富语义理解能力,在攻击中同时考虑点云的语义信息,使对抗样本在语义上极大程度地远离原语义属性来提高攻击迁移性。另外,考虑到当前攻击迁移性高的对抗样本普遍不可感知性不够好,将语义对抗攻击加入到谱域空间上,使对抗点云与干净点云相比有难以察觉的形变,达到了可迁移性与不可感知性的一个微妙的平衡。通过大量实验证明,该算法可以显著提高对抗样本的可迁移性,并且对防御方法更具鲁棒性。

关键词: CLIP, 点云, 对抗攻击, 攻击迁移性, 谱域

Abstract:

Deep learning-based 3D point cloud understanding has received increasing attention in various applications such as autonomous driving, robotics, surveillance, etc., and the study of adversarial attacks on point cloud deep learning models helps to evaluate and improve their adversarial robustness. However, most of the existing attack methods are aimed at white-box attacks, generating adversarial samples that have very low success rate and are easily defensible against transferable attacks on black-box models with unknown model parameters. These methods only consider optimization in the geometric space to mislead specific classifiers and fail to essentially change the deep intrinsic semantic structure of point cloud data, resulting in their limited ability to transferable attacks under different classifiers. To address these issues, the proposed algorithm leveraged the rich semantic comprehension capability of large multimodal models to incorporate the semantic information of the point clouds into the attack, thereby ensuring that the adversarial samples diverged significantly from the original semantic attributes to a remarkable extent to enhance transferability. In addition, considering that the current adversarial samples with high attack transferability often exhibited insufficient imperceptibility, the algorithm integrated the above semantic adversarial attack into the spectral domain space, achieving a delicate balance between transferability and imperceptibility. Extensive evaluations demonstrated the 3D CLIP-based semantic offset attack (3DCLAT) can significantly improve the transferability of the adversarial samples and is more robust to defense methods.

Key words: CLIP, point cloud, adversarial attack, attack transferability, spectral domains

中图分类号: