欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (1): 59-69.DOI: 10.11996/JG.j.2095-302X.2025010059

• 图像处理与计算机视觉 • 上一篇    下一篇

基于点云特征增强的复杂室内场景3D目标检测

苑朝(), 赵明雪, 张丰羿, 冯晓勇, 李冰, 陈瑞()   

  1. 华北电力大学自动化系,河北 保定 071003
  • 收稿日期:2024-08-02 接受日期:2024-09-23 出版日期:2025-02-28 发布日期:2025-02-14
  • 通讯作者:陈瑞(1993-),女,讲师,博士。主要研究方向为电力视觉导航和多模态目标检测等。E-mail:chenrui_cr@ncepu.edu.cn
  • 第一作者:苑朝(1985-),男,副教授,博士。主要研究方向为计算机视觉和多轴机械臂智能控制等。E-mail:chaoyuan@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金联合基金重点支持项目(U21A20486);中央高校基本科研业务费专项资金(2024MS137)

Point cloud feature enhanced 3D object detection in complex indoor scenes

YUAN Chao(), ZHAO Mingxue, ZHANG Fengyi, FENG Xiaoyong, LI Bing, CHEN Rui()   

  1. Department of Automation, North China Electric Power University, Baoding Hebei 071003, China
  • Received:2024-08-02 Accepted:2024-09-23 Published:2025-02-28 Online:2025-02-14
  • Contact: CHEN Rui (1993-), lecturer, Ph.D. Her main research interests cover power vision navigation and multimodal object detection, etc. E-mail:chenrui_cr@ncepu.edu.cn
  • First author:YUAN Chao (1985-), associate professor, Ph.D. His main research interests cover computer vision and intelligent control of multi-axis manipulator, etc. E-mail:chaoyuan@ncepu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China Joint Fund of China is a Key Support Project(U21A20486);Funded by the Central University Basic Research Business Fund(2024MS137)

摘要:

在复杂室内场景下的3D点云目标检测中,点云规模大且目标密集细节多。针对现有检测算法处理点云数据时会丢失大量局部特征且不能提取足够的空间信息与语义信息,致使检测精度低的问题,提出了一种基于改进VoteNet的点云特征增强的复杂室内场景3D目标检测(PFE)算法。首先,利用动态特征补偿模块模拟种子点集与分组集点云特征的交互查询过程,逐步恢复丢失的特征来进行特征补偿;其次,在特征提取部分引入残差MLP模块,通过残差结构搭建更深层的特征学习网络以挖掘更细节的点云特征;最后,在目标提案生成阶段引入特征自注意力机制对一组独立的目标点进行语义关系建模,生成新的特征映射。在公开数据集SUN RGB-D和ScanNet V2上进行实验,实验证明改进后的模型对室内目标的检测精度相较于基准模型在mAP@0.25上分别提升了5.0%和11.5%,大量的消融实验证明了每个改进模块的有效性。

关键词: 室内场景, 三维点云, 目标检测, 特征补偿, 交互查询, 残差, 自注意力机制, 特征映射

Abstract:

3D point cloud object detection in complex indoor scenes presents challenges due to large-scale point clouds and dense objects with many details. When dealing with point cloud data, existing detection algorithms lose a significant amount of local features and fail to extract enough spatial and semantic information, resulting in low detection accuracy. To solve this problem, a point cloud features enhanced 3D object detection in complex indoor scenes (PEF) algorithm was proposed based on an improved VoteNet. Firstly, a dynamic feature compensation module was used to simulate the interactive query process between seed point set features and grouping set features, gradually recovering lost features for feature compensation. Secondly, a residual MLP module was introduced into the feature extraction part, and a deeper feature learning network was constructed through a residual structure to mine more detailed point cloud features. Finally, in the proposal stage, a feature self-attention mechanism was introduced to model the semantic relationship between a set of independent object points, generating a new feature map. Experiments conducted on the public datasets SUN RGB-D and ScanNet V2 demonstrated that the improved model enhanced the detection accuracy for indoor objects by 5.0% and 11.5% respectively on mAP@0.25 compared with the baseline model. Extensive ablation experiments confirmed the effectiveness of each improved module.

Key words: indoor scene, 3D point cloud, object detection, feature compensation, interactive query, residual, self-attention, feature map

中图分类号: