欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (3): 614-624.DOI: 10.11996/JG.j.2095-302X.2025030614

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于反馈的迭代采样高噪声点云去噪框架

王昶畅(), 江坤, 姜凯, 张鹏, 苏智勇()   

  1. 南京理工大学自动化学院,江苏 南京 210094
  • 收稿日期:2024-08-19 接受日期:2024-11-25 出版日期:2025-06-30 发布日期:2025-06-13
  • 通讯作者:苏智勇(1981-),男,副教授,博士。主要研究方向为计算机视觉。E-mail:suzhiyong@njust.edu.cn
  • 第一作者:王昶畅(2000-),男,硕士研究生。主要研究方向为计算机视觉。E-mail:1812025077@qq.com
  • 基金资助:
    国家重点研发计划项目(2022QY0102)

Feedback-based iterative sampling denoising framework for point clouds with high-level noise

WANG Changchang(), JIANG Kun, JIANG Kai, ZHANG Peng, SU Zhiyong()   

  1. School of Automation, Nanjing University of Science & Technology, Nanjing Jiangsu 210094, China
  • Received:2024-08-19 Accepted:2024-11-25 Published:2025-06-30 Online:2025-06-13
  • Contact: SU Zhiyong (1981-), associate professor, Ph.D. His main research interest covers computer vision. E-mail:suzhiyong@njust.edu.cn
  • First author:WANG Changchang (2000-), master student. His main research interest covers computer vision. E-mail:1812025077@qq.com
  • Supported by:
    National Key Research and Development Program of China(2022QY0102)

摘要:

在三维点云采集过程中,由于测量异常、边缘散射和被测物体材质等因素的影响,点云数据容易受到噪声的干扰。然而,目前的深度点云去噪算法在高噪声条件下表现较差,且易导致锐利特征的平滑。针对这一问题,提出了一种基于反馈的迭代采样高噪声点云去噪框架,旨在提升现有监督去噪算法在高噪声条件下的表现。首先,用现有的监督去噪网络对噪声点云进行初步去噪,得到预去噪点云;然后,将原始噪声点云和预去噪点云一起输入采样融合模块,得到包含几何细节和边缘特征的融合点云;再次,反馈感知细化网络在预去噪点云的反馈引导下对融合点云进行去噪,得到本轮迭代的去噪结果;最后,通过将当前去噪结果作为下一轮的反馈信息以及采样融合模块的输入,进行多次迭代,逐步去噪,得到最终的去噪结果。实验结果表明,在高噪声条件下,该框架提升了现有监督式点云去噪算法的性能,表现出了较好的去噪效果和特征保持能力。

关键词: 点云去噪, 点云采样, 高噪声, 反馈机制, 迭代

Abstract:

During the 3D point cloud collection process, point cloud data is easily interfered by noise due to factors such as measurement anomalies, edge scattering, and the material properties of the measured object. However, the current depth point cloud denoising algorithms perform poorly under high-level noise conditions and can easily lead to smoothing of sharp features. To address this problem, a feedback-based sampling denoising framework for point clouds with high-level noise was proposed, with the aim of enhancing the performance of existing supervised denoising algorithms under high-level noise conditions. First, the noisy point cloud was denoised using the existing supervised noise network to obtain a pre-denoised point cloud. Second, the original noisy point cloud and the pre-denoised point cloud were jointly input into the sampling module to obtain a fusion point cloud containing geometric details and edge features. Third, the feedback-aware refinement network denoised the fused point cloud under the guidance of feedback from the pre-denoised point cloud to obtain the denoising result for this round of iterations. Finally, by using the denoised result from the current iteration as the feedback for the next round and as input to the sampling fusion module, the process was iterated progressively until the final denoising result was obtained. Experimental results demonstrated that this framework enhanced the performance of existing supervised point cloud noise denoising algorithms under high-level noise conditions, exhibiting excellent denoising effects and feature retention capabilities.

Key words: point cloud denoising, point cloud sampling, high-level noise, feedback mechanism, iteration

中图分类号: