[1] |
ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1907.02893.
|
[2] |
ZHOU K Y, LIU Z W, QIAO Y, et al. Domain generalization: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4396-4415.
|
[3] |
YUE X Y, ZHANG Y, ZHAO S C, et al. Domain randomization and pyramid consistency: simulation-to-real generalization without accessing target domain data[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 2100-2110.
|
[4] |
PENG X B, ANDRYCHOWICZ M, ZAREMBA W, et al. Sim-to-real transfer of robotic control with dynamics randomization[C]// 2018 IEEE International Conference on Robotics and Automation. New York: IEEE Press, 2018: 3803-3810.
|
[5] |
SHANKAR S, PIRATLA V, CHAKRABARTI S, et al. Generalizing across domains via cross-gradient training[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1804.10745.
|
[6] |
GILLES B, ANAND D A, URUN D, et al. Domain generalization by marginal transfer learning[J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22: (1): 46-100.
|
[7] |
LIU A S, TANG S Y, LIU X L, et al. Towards defending multiple adversarial perturbations via gated batch normalization[EB/OL]. [2023-12-19]. http://arxiv.org/abs/2012.01654.
|
[8] |
GUO R C, ZHANG P C, LIU H, et al. Out-of-distribution prediction with invariant risk minimization: the limitation and an effective fix[EB/OL]. [2023-12-19]. http://arxiv.org/abs/2101.07732.
|
[9] |
AHUJA K, CABALLERO E, ZHANG D H, et al. Invariance principle meets information bottleneck for out-of-distribution generalization[J]. Advances in Neural Information Processing Systems, 2021, 34: 3438-3450.
|
[10] |
MANCINI M, BULÒ S R, CAPUTO B, et al. Best sources forward: domain generalization through source-specific nets[C]// 2018 25th IEEE International Conference on Image Processing. New York: IEEE Press, 2018: 1353-1357.
|
[11] |
LI D, YANG Y X, SONG Y Z, et al. Learning to generalize: meta-learning for domain generalization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1).
|
[12] |
KIM D, YOO Y, PARK S, et al. SelfReg: self-supervised contrastive regularization for domain generalization[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2021: 9599-9608.
|
[13] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2023-12-19]. https://arxiv.org/abs/1502.03167.
|
[14] |
HUANG L, QIN J, ZHOU Y, et al. Normalization techniques in training DNNs: methodology, analysis and application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10173-10196.
|
[15] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778.
|
[16] |
XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 5987-5995.
|
[17] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
[18] |
BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1607.06450.
|
[19] |
MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1802.05957.
|
[20] |
WU Y X, HE K M. Group normalization[J]. International Journal of Computer Vision, 2020, 128(3): 742-755.
|
[21] |
ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1607.08022.
|
[22] |
HUANGI L, HUANGI L, YANG D W, et al. Decorrelated batch normalization[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 791-800.
|
[23] |
HUANG L, ZHOU Y, ZHU F, et al. Iterative normalization: beyond standardization towards efficient whitening[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 4869-4878.
|
[24] |
HUANG L, ZHOU Y, LIU L, et al. Group whitening: balancing learning efficiency and representational capacity[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2021: 9507-9516.
|
[25] |
邓盈盈, 唐帆, 董未名. 图像艺术风格化的研究现状[J]. 南京信息工程大学学报: 自然科学版, 2017, 9(6): 593-598.
|
|
DENG Y Y, TANG F, DONG W M. A survey of image artistic stylization[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2017, 9(6): 593-598 (in Chinese).
|
[26] |
刘洪麟, 帅仁俊. 一种具有空间约束的快速神经风格迁移方法[J]. 计算机科学, 2019, 46(3): 283-286.
DOI
|
|
LIU H L, SHUAI R J. Method of fast neural style transfer with spatial constraint[J]. Computer Science, 2019, 46(3): 283-286 (in Chinese).
|
[27] |
林晓, 屈时操, 黄伟, 等. 显著区域保留的图像风格迁移算法[J]. 图学学报, 2021, 42(2): 190-197.
|
|
LIN X, QU S C, HUANG W, et al. Style transfer algorithm for salient region preservation[J]. Journal of Graphics, 2021, 42(2): 190-197 (in Chinese).
|
[28] |
LI Y H, WANG N Y, SHI J P, et al. Revisiting batch normalization for practical domain adaptation[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1603.04779.
|
[29] |
ZHANG J W, WANG X, BAI X, et al. Revisiting domain generalized stereo matching networks from a feature consistency perspective[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 12991-13001.
|
[30] |
DUMOULIN V, SHLENS J, KUDLUR M. A learned representation for artistic style[EB/OL]. [2023-12-19]. http://arxiv.org/abs/1610.07629.
|
[31] |
HUANG L, LIU X L, LANG B, et al. Orthogonal weight normalization: solution to optimization over multiple dependent stiefel manifolds in deep neural networks[EB/OL]. [2023-12-19]. https://arxiv.org/pdf/1709.06079v1.
|
[32] |
WANG M Z, WANG S S, WANG W, et al. Reducing bi-level feature redundancy for unsupervised domain adaptation[J]. Pattern Recognition, 2023, 137: 109319.
|