[1] |
王士心, 许可. 稀疏监测样本下的复合材料固化过程热源分布动态估计[J]. 图学学报, 2024, 45(2): 388-398.
DOI
|
|
WANG S X, XU K. Dynamic estimation of heat source distribution during solidification of composite materials under sparse monitoring samples[J]. Journal of Graphics, 2024, 45(2): 388-398 (in Chinese).
DOI
|
[2] |
云峰, 王有治, 宋娇, 等. 增材制造自支撑点阵-实体复合结构拓扑优化方法[J]. 图学学报, 2023, 44(5): 1013-1020.
DOI
|
|
YUN F, WANG Y Z, SONG J, et al. A lattice-solid hybrid structure topology optimization method for support-free additive manufacturing[J]. Journal of Graphics, 2023, 44(5): 1013-1020 (in Chinese).
DOI
|
[3] |
吴振华, 赵韩, 董玉德, 等. 基于梯度有限元的异质材料实体优化设计[J]. 图学学报, 2012, 33(6): 76-81.
|
|
WU Z H, ZHAO H, DONG Y D, et al. Optimal design of heterogeneous objects based on graded finite elements[J]. Journal of Graphics, 2012, 33(6): 76-81 (in Chinese).
|
[4] |
张建宝, 赵文宇, 王俊锋, 等. 复合材料自动铺放工艺技术研究现状[J]. 航空制造技术, 2014(16): 80-83, 94.
|
|
ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014(16): 80-83, 94 (in Chinese).
|
[5] |
GHAEDSHARAF M, BRUNEL J E, LEBEL L L. Multiscale numerical simulation of the forming process of biaxial braids during thermoplastic braid-trusion: predicting 3D and internal geometry and fiber orientation distribution[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106637.
|
[6] |
VAN RAVENHORST J H, AKKERMAN R. Overbraiding simulation[M]// KYOSEVY. Advances in braiding technology:specialized techniques and applications. Oxford: Woodhead Publishing, 2016: 431-455.
|
[7] |
PICKETT A, ERBER A, VON REDEN T, et al. Comparison of analytical and finite element simulation of 2D braiding[J]. Plastics, Rubber and Composites, 2009, 38(9/10): 387-395.
|
[8] |
BOHLER P, PICKETT A, MIDDENDORF P. Finite element method (FEM) modeling of overbraiding[M]//KYOSEV Y. Advances in braiding technology:specialized techniques and applications. Oxford: Woodhead Publishing, 2016: 457-475.
|
[9] |
PICKETT A K, SIRTAUTAS J, ERBER A. Braiding simulation and prediction of mechanical properties[J]. Applied Composite Materials, 2009, 16(6): 345-364.
|
[10] |
VU A N, GROUVE W J B, WARNET L L, et al. Modeling anisotropic friction in triaxial overbraiding simulations[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107958.
|
[11] |
VU A N, GROUVE W J B, DE ROOIJ M B, et al. A mesoscopic model for inter-yarn friction[J]. Composites Part A: Applied Science and Manufacturing, 2024, 180: 108070.
|
[12] |
CZICHOS R, BAREIRO O, PICKETT A K, et al. Experimental and numerical studies of process variabilities in biaxial carbon fiber braids[J]. International Journal of Material Forming, 2021, 14(1): 39-54.
|
[13] |
LU X Y, BO P B, WANG L Q. Real-time 3D topological braiding simulation with penetration-free guarantee[J]. Computer-Aided Design, 2023, 164: 103594.
|
[14] |
LI Z J, DAI H L, LIU Z G, et al. Micro-CT based parametric modeling and damage analysis of three-dimensional rotary-five-directional braided composites under tensile load[J]. Composite Structures, 2023, 309: 116734.
|
[15] |
MICHAELI W, ROSENBAUM U, JEHRKE M. Processing strategy for braiding of complex-shaped parts based on a mathematical process description[J]. Composites Manufacturing, 1990, 1(4): 243-251.
|
[16] |
DU G W, POPPER P. Analysis of a circular braiding process for complex shapes[J]. The Journal of the Textile Institute, 1994, 85(3): 316-337.
|
[17] |
KESSELS J F A, AKKERMAN R. Prediction of the yarn trajectories on complex braided preforms[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1073-1081.
|
[18] |
LONG A C. Process modelling for liquid moulding of braided preforms[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(7): 941-953.
|
[19] |
FOULADI A, NEDOUSHAN R J. Prediction and optimization of yarn path in braiding of mandrels with flat faces[J]. Journal of Composite Materials, 2018, 52(5): 581-592.
|
[20] |
MONNOT P, LÉVESQUE J, LEBEL L L. Automated braiding of a complex aircraft fuselage frame using a non-circular braiding model[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 48-63.
|
[21] |
VAN RAVENHORST J H, AKKERMAN R. A yarn interaction model for circular braiding[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 254-263.
|
[22] |
WU Z Y, SHU Z X, KYOSEV Y, et al. Numerical prediction methodology for tow orientation on irregular mandrels with constant cross-sections[J]. Journal of Composite Materials, 2019, 53(8): 1067-1078.
|
[23] |
GONDRAN M, ABDIN Y, GENDREAU Y, et al. Automated braiding of non-axisymmetric structures using an iterative inverse solution with angle control[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106288.
|
[24] |
HANS T, CICHOSZ J, BRAND M, et al. Finite element simulation of the braiding process for arbitrary mandrel shapes[J]. Composites Part A: Applied Science and Manufacturing, 2015, 77: 124-132.
|
[25] |
HEIECK F, HERMANN F, MIDDENDORF P, et al. Influence of the cover factor of 2D biaxial and triaxial braided carbon composites on their in-plane mechanical properties[J]. Composite Structures, 2017, 163: 114-122.
|
[26] |
WEHRKAMP-RICHTER T, HINTERHÖLZL R, PINHO S T. Damage and failure of triaxial braided composites under multi-axial stress states[J]. Composites Science and Technology, 2017, 150: 32-44.
|
[27] |
SWERY E E, HANS T, BULTEZ M, et al. Complete simulation process chain for the manufacturing of braided composite parts[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 378-390.
|
[28] |
VAN RAVENHORST J H. Design tools for circular overbraiding of complex mandrels[D]. Enschede: University of Twente, 2018.
|
[29] |
ARGYRIS J. An excursion into large rotations[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1/3): 85-155.
|
[30] |
BJÖRCK Å. Numerics of gram-schmidt orthogonalization[J]. Linear Algebra and its Applications, 1994, 197-198: 297-316.
|
[31] |
VAN RAVENHORST J H, AKKERMAN R. Circular braiding take-up speed generation using inverse kinematics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 147-158.
|