[1] |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// The 26th International Conference on World Wide Web. Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182.
|
[2] |
李振波, 杨晋琪, 岳峻. 基于协同回归模型的矩阵分解推荐[J]. 图学学报, 2019, 40(6): 983-990.
DOI
|
|
LI Z B, YANG J Q, YUE J. Matrix factorization recommendation based on collaborative regression model[J]. Journal of Graphics, 2019, 40(6): 983-990 (in Chinese).
|
[3] |
HE X N, ZHANG H W, KAN M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]// The 39th International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM, 2016: 549-558.
|
[4] |
KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
|
[5] |
PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]// BRUSILOVSKYP, KOBSAA, NEJDLW. The Adaptive Web:Methods and Strategies of Web Personalization. Heidelberg: Springer, 2007: 325-341.
|
[6] |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// The 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461.
|
[7] |
WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// The World Wide Web Conference. New York: ACM, 2019: 3307-3313.
|
[8] |
王永贵, 陈书铭, 刘义海, 等. 结合超图对比学习和关系聚类的知识感知推荐算法[J]. 计算机科学与探索, 2024, 18(8): 2140-2155.
DOI
|
|
WANG Y G, CHEN S M, LIU Y H, et al. Knowledge-aware recommendation algorithm combining hypergraph contrast learning and relational clustering[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155 (in Chinese).
|
[9] |
赵超. 采用集成学习的大规模推荐系统优化研究[C]// 第七届创新教育学术会议论文集. 太原: 山西省中大教育研究院, 2023: 105-106.
|
|
ZHAO C. Research on optimization of large-scale recommendation system based on ensemble learning[C]// The Seventh Innovation Education Academic Conference Proceedings. Taiyuan: Shanxi Zhongda Institute of Education, 2023: 105-106 (in Chinese).
|
[10] |
GUO G B, ZHANG J, THALMANN D. A simple but effective method to incorporate trusted neighbors in recommender systems[C]// The 20th International Conference on User Modeling, Adaptation, and Personalization. Cham: Springer, 2012: 114-125.
|
[11] |
何柳, 安然, 刘姝妍, 等. 基于知识图谱的航空多模态数据组织与知识发现技术研究[J]. 图学学报, 2024, 45(2): 300-307.
DOI
|
|
HE L, AN R, LIU Z Y, et al. Research on knowledge graph-based aviation multi-modal data organization and discovery method[J]. Journal of Graphics, 2024, 45(2): 300-307 (in Chinese).
DOI
|
[12] |
TANG X Y, ZHOU J. Dynamic personalized recommendation on sparse data[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(12): 2895-2899.
|
[13] |
HU Z D, XU G Q, ZHENG X, et al. SSL-SVD: semi- supervised learning--based sparse trust recommendation[J]. ACM Transactions on Internet Technology (TOIT), 2020, 20(1): 4.
|
[14] |
WU C, LIU S, ZENG Z Y, et al. Knowledge graph-based multi-context-aware recommendation algorithm[J]. Information Sciences, 2022, 595: 179-194.
|
[15] |
YU J L, YIN H Z, LI J D, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]// The Web Conference 2021. New York: ACM, 2021: 413-424.
|
[16] |
XIA L H, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering[C]// The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 70-79.
|
[17] |
YERA R, CASTRO J, MARTÍNEZ L. A fuzzy model for managing natural noise in recommender systems[J]. Applied Soft Computing, 2016, 40: 187-198.
|
[18] |
LIU Z, FENG X D, WANG Y C, et al. Self-paced learning enhanced neural matrix factorization for noise-aware recommendation[J]. Knowledge-Based Systems, 2021, 213: 106660.
|
[19] |
WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]// The World Wide Web Conference. New York: ACM, 2019: 2000-2010.
|
[20] |
REN L J, LU J, SUO W. Multi-source knowledge embedding research of knowledge graph[C]// 2019 IEEE 3rd International Conference on Circuits, Systems and Devices. New York: IEEE Press, 2019: 163-166.
|
[21] |
ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 353-362.
|
[22] |
OKURA S, TAGAMI Y, ONO S, et al. Embedding-based news recommendation for millions of users[C]// The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 1933-1942.
|
[23] |
GRAD-GYENGE L, KISS A, FILZMOSER P. Graph embedding based recommendation techniques on the knowledge graph[C]// Adjunct PUBLICATION of the 25th Conference on User Modeling, Adaptation and Personalization. New York: ACM, 2017: 354-359.
|
[24] |
WU G, LI L L, LI X Y, et al. Graph embedding based real-time social event matching for EBSNs recommendation[J]. World Wide Web, 2022, 25(1): 335-356.
|
[25] |
WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// The 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426.
|
[26] |
WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]// The Web Conference 2021. New York: ACM, 2021: 878-887.
|
[27] |
ZHAO H, DU H, YANG S Q, et al. Rec-RN: user representations learning over the knowledge graph for recommendation systems[C]// The 4th International Conference on Machine Learning, Big Data and Business Intelligence. New York: IEEE Press, 2022: 228-233.
|
[28] |
ZOU D, WEI W, MAO X L, et al. Multi-level cross-view contrastive learning for knowledge-aware recommender system[C]// The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1358-1368.
|
[29] |
FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]// The 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3558-3565.
|
[30] |
XIA X, YIN H Z, YU J L, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[C]// The 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021, 35(5): 4503-4511.
|
[31] |
刘昺昊. 基于超图神经网络的推荐方法研究[D]. 苏州: 苏州大学, 2022.
|
|
LIU B H. Research on recommendation method with hypergraph neural network[D]. Suzhou: Soochow University, 2022 (in Chinese).
|
[32] |
YANG Z, XU L K, ZHAO L. Efbh: collaborative filtering model based on multi-hypergraph encoder[J]. IEEE Transactions on Consumer Electronics, 2023, 70(1): 2939-2948.
|
[33] |
WEI Y W, LIU W Q, LIU F, et al. LightGT: a light graph transformer for multimedia recommendation[C]// The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1508-1517.
|
[34] |
LIU J, SONG L Y, WANG G T, et al. Meta-HGT: metapath-aware HyperGraph transformer for heterogeneous information network embedding[J]. Neural Networks, 2023, 157: 65-76.
|