欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (5): 1050-1060.DOI: 10.11996/JG.j.2095-302X.2025051050

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于超图表示学习和Transformer模型优化的知识感知推荐

左屿琪1(), 张云峰1(), 张秋悦2, 徐英城3   

  1. 1 山东财经大学计算机与人工智能学院山东 济南 250014
    2 山东师范大学信息科学与工程学院山东 济南 250014
    3 山东财经大学管理科学与工程学院山东 济南 250014
  • 收稿日期:2024-08-22 接受日期:2024-12-25 出版日期:2025-10-30 发布日期:2025-09-10
  • 通讯作者:张云峰(1977-),男,教授,博士。主要研究方向为图像处理、可视化数据分析等。E-mail:yfzhang@sdufe.edu.cn
  • 第一作者:左屿琪(1998-),女,硕士研究生。主要研究方向为推荐算法。E-mail:yqzuo@mail.sdufe.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2022MF245);山东省高等学校“青创人才引育计划”;山东省自然科学基金青年基金(ZR2023QF161);山东省自然科学基金青年基金(ZR2024QF158);山东省高等学校青年创新团队项目(2022KJ185)

Knowledge-aware recommendation based on hypergraph representation learning and Transformer model optimization

ZUO Yuqi1(), ZHANG Yunfeng1(), ZHANG Qiuyue2, XU Yingcheng3   

  1. 1 School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan Shandong 250014, China
    2 School of Information Science and Engineering, Shandong Normal University, Jinan Shandong 250014, China
    3 School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan Shandong 250014, China
  • Received:2024-08-22 Accepted:2024-12-25 Published:2025-10-30 Online:2025-09-10
  • First author:ZUO Yuqi (1998-), master student. Her main research interest covers recommendation algorithm. E-mail:yqzuo@mail.sdufe.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2022MF245);Foundation items:Youth Talent Introduction and Cultivation Plan in Colleges and Universities of Shandong Province;Shandong Province Natural Science Fundation Youth Branch(ZR2023QF161);Shandong Provincial Youth Fund(ZR2024QF158);Youth Innovation Team in Colleges and universities of Shandong Province(2022KJ185)

摘要:

基于知识图谱的推荐算法是近年来推荐系统领域的一个研究重点和热点,这主要是因为引入知识图谱,能够获得项目的辅助信息,从而极大地增强了推荐系统的能力,为用户带来更为精准和个性化的推荐体验。为此,提出一种基于超图表示学习和Transformer模型优化的知识感知推荐模型,利用超图在处理高阶关系上的独特优势,直接对用户与项目之间复杂的交互信息进行建模,从而极大地丰富了其交互信息。因局部图缺少用户与项目之间的全局交互信息,因此在局部图中构造全局超图;而非局部图存在冗余信息,在非局部图中构造非全局超图,从而捕获用户与项目之间更全面的交互信息。同时,利用Transformer模型的注意力机制增强用户节点与项目节点之间的协作关系,并从用户点击不感兴趣的项目且有噪声的用户交互数据中挖掘更有价值的偏好信息,优化用户与项目节点的嵌入,以缓解噪声干扰,提升对用户偏好的推荐性能。

关键词: 知识图谱, 知识感知推荐, 超图, Transformer, 注意力机制

Abstract:

The recommendation algorithm based on knowledge graphs has emerged as a significant research focus and hotspot in the field of recommender systems in recent years. The introduction of knowledge graphs, enables the acquisition of auxiliary information about items, thereby significantly enhancing the capabilities of recommendation systems and providing users with more precise and personalized recommendation experiences. In response to this trend, a knowledge-aware recommendation model optimized via hypergraph representation learning and the Transformer model was proposed. This model leveraged the unique advantages of hypergraphs in handling high-order relationships to directly model the complex interaction information between users and items, thereby greatly enriching their interaction information. Since local graphs lack global interaction information between users and items, global hypergraphs were constructed within local graphs. On the other hand, nonlocal graphs contain redundant information, so nonlocal hypergraphs were built to capture more comprehensive interaction information between users and items. Additionally, the attention mechanism of the Transformer model was employed to strengthen the collaboration between user nodes and item nodes, mining more valuable preference information from noisy user interaction data such as clicks on uninteresting items. This optimized the embeddings of user and item nodes, mitigating the impact of noise and enhancing the recommendation performance based on user preferences.

Key words: knowledge graph, knowledge-aware recommendation, hypergraph, Transformer, attention mechanism

中图分类号: