欢迎访问《图学学报》 分享到:

图学学报 ›› 2025, Vol. 46 ›› Issue (6): 1200-1208.DOI: 10.11996/JG.j.2095-302X.2025061200

• 制造产品核心工业软件 • 上一篇    下一篇

面向大规模点云数据的一站式船体逆向建模轻量化方法

黄永裕1(), 杜林1(), 强以铭2, 丁军2   

  1. 1 宁波大学海运学院浙江 宁波 315000
    2 中国船舶科学研究中心江苏 无锡 214082
  • 收稿日期:2025-08-15 接受日期:2025-11-05 出版日期:2025-12-30 发布日期:2025-12-27
  • 通讯作者:杜林(1988-),男,副教授,博士。主要研究方向为船型智能设计等。E-mail:dulin1@nbu.edu.cn
  • 第一作者:黄永裕(2000-),男,硕士研究生。主要研究方向为船型智能设计。E-mail:nbu_hyy@163.com
  • 基金资助:
    船舶结构安全全国重点实验室开放基金(NAKLAS-2025KF004-K);国家自然科学基金青年科学基金(52201368);高等学校学科创新引智计划项目(D21013)

A lightweight framework for one-stop hull reverse modeling from large-amount point cloud data

HUANG Yongyu1(), DU Lin1(), QIANG Yiming2, DING Jun2   

  1. 1 Faculty of Maritime and Transportation, Ningbo University, Ningbo Zhejiang 315000, China
    2 China Ship Scientific Research Center, Wuxi Jiangsu 214082, China
  • Received:2025-08-15 Accepted:2025-11-05 Published:2025-12-30 Online:2025-12-27
  • First author:HUANG Yongyu (2000-), master student. His main research interest covers ship hull design method. E-mail:nbu_hyy@163.com
  • Supported by:
    National Key Laboratory of Ship Structural Safety(NAKLAS-2025KF004-K);National Natural Science Foundation of China Youth Science Fund(52201368);Project of the Program for Disciplines Innovation of Higher Education Institutions(D21013)

摘要:

基于大规模点云的船体逆向建模技术在数字孪生、水动力性能分析方面存在较为实际的需求,目前针对船体逆向建模中大规模点云数据处理问题的特殊方法较少,常规方法多依赖部署训练成本较高的神经网络模型或国外商业软件。所以,开展船体轻量化逆向建模一站式方法研究,具有一定的工程应用价值:首先采用栅格化技术对点云数据进行压缩预处理,在保留船体宏观几何特征的前提下,将数据规模压缩90%以上,显著降低后续算法计算负荷;然后基于船体几何特征设计轮廓线检测与拟合算法,运用最小二乘法实现边界修正,确保完整性与光顺性;最后采用基于斜率异常检测的光顺算法,通过斜率异常侦测、初步修正和深度光顺3个步骤,高效地实现纵向和垂向的全船型线自动光顺处理。该方法经过2组不同船型的验证,与商业计算机辅助设计软件建立的参考模型相比主尺度误差(+0.24%~+2.68%)与排水体积偏差(-1.05%~-0.88%)仅存在微小偏移,均处于可接受范围内,且在常规计算机上5 min内即可完成,在船体逆向建模、船舶数字化以及三维生成式大模型的船型光顺等相关领域具有一定的应用潜力。

关键词: 三维点云数据, 船型光顺, 逆向建模, 栅格化降采样, 船型

Abstract:

There is a practical need for reverse modeling technology of ship hulls based on large-scale point clouds in applications such as digital twins and hydrodynamic performance analysis. Currently, few specialized methods addressed large-scale point cloud data for ship hull modeling, and conventional approaches usually relied on neural network models with high training costs or foreign commercial software. In this case, designing a lightweight, one-stop method for hull reverse modeling is valuable: initially, the ship hull was meshed to compress the point cloud data, reducing the data volume by over 90% while preserving the hull’s macro geometric features, thereby significantly decreasing the computational cost for the following algorithms; secondly, contour line detection and fitting algorithms were designed based on the hull’s geometric features, utilizing the least squares method for contour correction to ensure its completeness and smoothness; finally, a smoothing algorithm based on slope anomaly detection was adopted, which efficiently performed automatic smoothing of the hull’s longitudinal and vertical form lines through three steps: slope anomaly detection, preliminary correction, and deep smoothing. The method was validated on two ship models. Compared to the reference models established using commercial CAD software, the principal dimension errors (+0.24% to +2.68%) and displacement volume deviations (-1.05% to -0.88%) were only minor and all within an acceptable range. The entire process was completed within 5 minutes on a conventional computer. The method demonstrated potential for application in related fields such as hull reverse modeling, ship digitalization, and hull form smoothing for 3D generative large models.

Key words: 3D point cloud data, hull-form fairing, reverse modeling, mesh down-sampling, hull form

中图分类号: