图学学报
• 计算机辅助几何设计 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 阐述了二阶和四阶Helmholtz 方程的一类周期边界问题的差分解法及其在 过渡曲面设计中的应用。这类方法不同于传统的PDE 方法中的二阶和四阶的偏微分方程, 比传统的二阶和四阶偏微分方程有了更多的自由项,因此,在曲面设计的时候,就有更多的 形状控制参数可进行调整,文中重点讨论了方程中的系数对曲面形状的影响,并研究了边界 切矢条件对曲面形状的影响及其在曲面形状设计中的应用。设计者只需给出边界曲线和边界 切矢,并通过对它们的控制就可构造和修改曲面形状。
关键词: 计算机应用, 过渡曲面设计, Helmholtz 方程, 曲面控制
Abstract: The problem discussed in this paper is about the second-order and fourth-order of Helmholtz equation of a class of periodic boundary problem and its difference solution in the transition surface design, which is different from traditional method of PDE in the second-order and fourth-order partial differential equations. It has more free items than the traditional method, so more shape control parameters can be adjusted in the surface design. The focused attention is to discuss the changing effects of equation coefficients and boundary conditions to the surface shape. If boundary curves and related tangent vectors are given by the designer, then the surface can be constructed.
Key words: computer application, transition surface design, Helmholtz equation, surface control
包崇兵, 韩旭里. 基于Helmholtz 方程的过渡曲面设计[J]. 图学学报.
BAO Chong-bing, HAN Xu-li. Blend Surface Design Based on Helmholtz Equations[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2010/V31/I1/94