图学学报
• 计算机辅助几何设计 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: B-样条曲线的升阶算法是CAD系统相互沟通必不可少的手段之一。B-样条曲线的控制多边形经过不断升阶以后,和Bézier曲线一样都会收敛到初始B-样条曲线。根据双次数B-样条的升阶算法,得到了B-样条曲线升阶的收敛性证明。与以往升阶算法不同的是,双次数B-样条的升阶算法具有割角的性质,这就使B-样条曲线升阶有了鲜明的几何意义。得到的结论可以使B-样条曲线像Bézier曲线一样,通过几何割角法生成。
关键词: 计算机应用, 几何收敛性, 积分估计, B-样条曲线, 升阶
Abstract: Degree elevation of B-spline curves is an essential measure for communication between CAD systems. The sequence of B-spline’s control polygon convergences to initial B-spline curve is similar to the Bézier curve. The convergence proof of B-spline curve is obtained based on the degree elevation algorithm by the bi-degree B-spline. In contrast to traditional methods, degree elevation algorithm by bi-degree B-spline can be interpreted as corner cutting process, so degree elevation of B-spline curve has obvious geometric meaning. The result makes B-spline curve obtained by geometric corner cutting algorithm as Bézier curve.
Key words: computer application, geometric convergence, integral estimation, B-spline curves, degree elevation
朱 平, 汪国昭. B-样条曲线升阶的几何收敛性[J]. 图学学报.
ZHU Ping, WANG Guo-zhao. Geometric Convergence of Degree Elevation of B-Spline Curves[J]. Journal of Graphics.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.txxb.com.cn/CN/
http://www.txxb.com.cn/CN/Y2010/V31/I1/100