摘 要:装配是机械制造过程中的一个重要环节,在装配过程中,经常会遇到欠#br# 约束问题。在复杂装配环境下,某个装配零件的欠约束会对其他零件的装配产生意想不到的#br# 结果。装配时,约束条件和零件自由度之间存在一种内在联系,通过建立基体和目标零件的#br# 自由度空间坐标系,对约束条件和自由度关系分析,得到约束条件和自由度关系的逻辑值,#br# 通过逻辑值判断剩余自由度的个数和类型,从而为快速解决欠约束问题提供了一种途径。#br# 关 键 词:欠约束;自由度分析;逻辑值;装配;空间坐标系
Abstract: Assembly is an important part in the process of mechanical manufacturing.#br# Under-constraint often exists in the assembly process. If a part is in an under-constraint situation#br# during a large and complex assembly process, it will bring an unexpected result to the related parts#br# which take the surface of the part as constraint reference. To solve the under-constraint problem,#br# the relationship between degrees of freedom (DOF) and constraints is established by building#br# space coordinate system. Logical values can be obtained from the tables. The numbers and types#br# of DOF are determined by logical values, and it provides a quick method to solve the#br# under-constraint problem.#br# Key words: under-constraint; DOF analysis; logical value; assembly; space coordinate#br# system
摘要: 装配是机械制造过程中的一个重要环节,在装配过程中,经常会遇到欠
约束问题。在复杂装配环境下,某个装配零件的欠约束会对其他零件的装配产生意想不到的
结果。装配时,约束条件和零件自由度之间存在一种内在联系,通过建立基体和目标零件的
自由度空间坐标系,对约束条件和自由度关系分析,得到约束条件和自由度关系的逻辑值,
通过逻辑值判断剩余自由度的个数和类型,从而为快速解决欠约束问题提供了一种途径。