Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 41-49.DOI: 10.11996/JG.j.2095-302X.2023010041
• Image Processing and Computer Vision • Previous Articles Next Articles
ZHANG Qian(), WANG Xia-li(
), WANG Wei-hao, WU Li-zhan, LI Chao
Received:
2022-04-09
Revised:
2022-06-15
Online:
2023-10-31
Published:
2023-02-16
Contact:
WANG Xia-li
About author:
ZHANG Qian (1996-), master student. Her main research interests cover graphic image processing and computer vision. E-mail:975573734@qq.com
Supported by:
CLC Number:
ZHANG Qian, WANG Xia-li, WANG Wei-hao, WU Li-zhan, LI Chao. Cell counting method based on multi-scale feature fusion[J]. Journal of Graphics, 2023, 44(1): 41-49.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010041
网络 | Layer | Parameters |
---|---|---|
Feature extraction module | 1~2 | Conv3-64-1 |
Max pooling | ||
3~4 | Conv3-128-1 | |
Max pooling | ||
5~7 | Conv3-256-1 | |
Max pooling | ||
8~10 | Conv3-512-1 | |
Feature fusion module | S1 | Avg pooling |
Conv1-512-1 | ||
S2 | Avg pooling | |
Conv1-512-1 | ||
S3 | Avg pooling | |
Conv1-512-1 | ||
S6 | Avg pooling | |
Conv1-512-1 | ||
Feature decoding module | 1 | Conv3-512-1 |
2 | Conv3-512-2 | |
3 | Conv3-512-3 | |
4 | Conv3-256-1 | |
5 | Conv3-128-2 | |
6 | Conv3-64-3 | |
Output | 1 | Conv1-1-1 |
Table 1 Network parameter configuration
网络 | Layer | Parameters |
---|---|---|
Feature extraction module | 1~2 | Conv3-64-1 |
Max pooling | ||
3~4 | Conv3-128-1 | |
Max pooling | ||
5~7 | Conv3-256-1 | |
Max pooling | ||
8~10 | Conv3-512-1 | |
Feature fusion module | S1 | Avg pooling |
Conv1-512-1 | ||
S2 | Avg pooling | |
Conv1-512-1 | ||
S3 | Avg pooling | |
Conv1-512-1 | ||
S6 | Avg pooling | |
Conv1-512-1 | ||
Feature decoding module | 1 | Conv3-512-1 |
2 | Conv3-512-2 | |
3 | Conv3-512-3 | |
4 | Conv3-256-1 | |
5 | Conv3-128-2 | |
6 | Conv3-64-3 | |
Output | 1 | Conv1-1-1 |
Fig. 7 Cell images and their corresponding annotations and ground truth density maps ((a) Cell image; (b) Annotation information; (c) Ground truth density map)
方法 | MAE | |||
---|---|---|---|---|
Ntrain=8 | Ntrain=16 | Ntrain=32 | Ntrain=50 | |
文献[14] | 4.9±0.7 | 3.8±0.2 | 3.5±0.2 | N/A |
文献[15] | 3.4±0.1 | N/A | 3.2±0.1 | N/A |
文献[18] | 3.9±0.5 | 3.4±0.2 | 2.9±0.2 | 2.9±0.2* |
文献[17] | N/A | N/A | N/A | 2.6±0.4* |
文献[15] | 3.9±0.4 | 2.9±0.5 | 2.4±0.4 | 2.3±0.4 |
文献[27] | 2.9±0.2 | 2.8±0.1 | 2.6±0.1 | 2.6±0.1 |
CSRNet | 3.5±0.3 | 3.3±0.3 | 3.2±0.2 | 3.2±0.2 |
本文方法 | 3.1±0.2 | 2.9±0.2 | 2.8±0.2 | 2.8±0.1 |
Table 2 Comparison results of VGG cells dataset
方法 | MAE | |||
---|---|---|---|---|
Ntrain=8 | Ntrain=16 | Ntrain=32 | Ntrain=50 | |
文献[14] | 4.9±0.7 | 3.8±0.2 | 3.5±0.2 | N/A |
文献[15] | 3.4±0.1 | N/A | 3.2±0.1 | N/A |
文献[18] | 3.9±0.5 | 3.4±0.2 | 2.9±0.2 | 2.9±0.2* |
文献[17] | N/A | N/A | N/A | 2.6±0.4* |
文献[15] | 3.9±0.4 | 2.9±0.5 | 2.4±0.4 | 2.3±0.4 |
文献[27] | 2.9±0.2 | 2.8±0.1 | 2.6±0.1 | 2.6±0.1 |
CSRNet | 3.5±0.3 | 3.3±0.3 | 3.2±0.2 | 3.2±0.2 |
本文方法 | 3.1±0.2 | 2.9±0.2 | 2.8±0.2 | 2.8±0.1 |
方法 | MAE | ||
---|---|---|---|
Ntrain=5 | Ntrain=10 | Ntrain=15 | |
文献[18] | 28.9±22.6 | 22.2±11.6 | 21.3±9.4 |
文献[13] | 23.6±4.6 | 21.5±4.2 | 20.5±3.5 |
文献[5] | 12.6±3.0 | 10.7±2.5 | 8.8±2.3 |
文献[27] | 9.3±1.4 | 8.9±0.9 | 8.6±0.3 |
CSRNet | 9.7±1.3 | 8.9±0.8 | 8.2±0.5 |
本文方法 | 8.8±0.9 | 7.7±0.7 | 7.1±0.4 |
Table 3 Comparison results of MBM cells dataset
方法 | MAE | ||
---|---|---|---|
Ntrain=5 | Ntrain=10 | Ntrain=15 | |
文献[18] | 28.9±22.6 | 22.2±11.6 | 21.3±9.4 |
文献[13] | 23.6±4.6 | 21.5±4.2 | 20.5±3.5 |
文献[5] | 12.6±3.0 | 10.7±2.5 | 8.8±2.3 |
文献[27] | 9.3±1.4 | 8.9±0.9 | 8.6±0.3 |
CSRNet | 9.7±1.3 | 8.9±0.8 | 8.2±0.5 |
本文方法 | 8.8±0.9 | 7.7±0.7 | 7.1±0.4 |
Fig. 11 Comparison of the method in this paper and CSRNet on the VGG cells dataset ((a) Input image; (b) Ground truth density map; (c) Density map predicted by this paper; (d) Density map predicted by CSRNet)
Fig. 12 Comparison of the method in this paper and CSRNet on the MBM cells dataset ((a) Input image; (b) Ground truth density map; (c) Density map predicted by this paper; (d) Density map predicted by CSRNet)
方法 | MAE | ||
---|---|---|---|
Ntrain=5 | Ntrain=10 | Ntrain=15 | |
M1 | 9.2±1.2 | 7.9±1.0 | 7.8±0.5 |
M2 | 8.9±1.0 | 7.8±0.7 | 7.2±0.4 |
M3 | 9.1±1.0 | 8.0±0.8 | 7.5±0.6 |
本文方法 | 8.8±0.9 | 7.7±0.7 | 7.1±0.4 |
Table 4 Ablation study results of MBM cells dataset
方法 | MAE | ||
---|---|---|---|
Ntrain=5 | Ntrain=10 | Ntrain=15 | |
M1 | 9.2±1.2 | 7.9±1.0 | 7.8±0.5 |
M2 | 8.9±1.0 | 7.8±0.7 | 7.2±0.4 |
M3 | 9.1±1.0 | 8.0±0.8 | 7.5±0.6 |
本文方法 | 8.8±0.9 | 7.7±0.7 | 7.1±0.4 |
[1] | MAUSUMI M, RAHUL K G, MANALI M. Detection and counting of red blood cells in blood cell images using Hough transform[J]. International Journal of Computer Applications, 2012, 53(16): 13-17. |
[2] | FAUSTINO G M, GATTASS M, REHEN S, et al. Automatic embryonic stem cells detection and counting method in fluorescence microscopy images[C]//2009 IEEE International Symposium on Biomedical Imaging:from Nano to Macro. New York: IEEE Press, 2009: 799-802. |
[3] | SHARIF J M, MISWAN M F, NGADI M A, et al. Red blood cell segmentation using masking and watershed algorithm: a preliminary study[J]. 2012 International Conference on Biomedical Engineering, 2012, 2012: 258-262. |
[4] | XUE Y, RAY N, HUGH J, et al. Cell counting by regression using convolutional neural network[C]// European Conference on Computer Vision. Chma: Springer International Publishing, 2016: 274-290. |
[5] | COHEN J P, BOUCHER G, GLASTONBURY C A, et al. Count-ception: counting by fully convolutional redundant counting[C]//2017 IEEE International Conference on Computer Vision Workshops. New York: IEEE Press, 2018: 18-26. |
[6] |
JIANG N, YU F H. A multi-column network for cell counting[J]. OSA Continuum, 2020, 3(7): 1834-1846.
DOI URL |
[7] | LI Y, ZHANG X, CHEN D. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[EB/OL]. (2018-04-11) [2021-12-08].https://arxiv.org/abs/1802.10062. |
[8] | ZHANG C, SUN C, SU R, et al. Segmentation of clustered nuclei based on curvature weighting[C]// The 27th Conference on Image Vision Computing. New York: ACM, 2012: 49. |
[9] | 刘树杰. 基于卷积神经网络的红细胞检测和计数方法[D]. 广州: 华南理工大学, 2017. |
LIU S J. Red blood cell detection and counting based on convolutional neural network[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). | |
[10] | 徐晓涛. 基于深度目标识别的细胞计数研究[D]. 合肥: 安徽大学, 2020. |
XU X T. Research on cell counting based on depth target recognition[D]. Hefei: Anhui University, 2020 (in Chinese). | |
[11] | 洪羽萌. 外周血细胞分类与计数在深度学习中的应用[D]. 南京: 南京大学, 2019. |
HONG Y M. Application of peripheral blood cell classification and counting in deep learning[D]. Nanjing: Nanjing University, 2019 (in Chinese). | |
[12] | AICH S, STAVNESS I. Improving object counting with heatmap regulation[EB/OL]. (2018-03-14) [2021-12-08]. https://www.semanticscholar.org/paper/Improving-Object-Counting-with-Heatmap-Regulation-Aich-Stavness/aabbc2880cdc9af83322e2bac8e2f88d1105f601. |
[13] | MARSDEN M, MCGUINNESS K, LITTLE S, et al. People, penguins and petri dishes: adapting object counting models to new visual domains and object types without forgetting[EB/OL]. (2017-11-15) [2022-01-03]. https://ieeexplore.ieee.org/document/8578940. |
[14] | LEMPITSKY V, ZISSERMAN A. Learning to count objects in images[EB/OL]. (2010-12-06) [2021-12-18]. https://dl.acm.org/doi/10.5555/2997189.2997337. |
[15] | FIASCHI L, KOETHE U, NAIR R, et al. Learning to count with regression forest and structured labels[EB/OL]. (2012-11-01) [2021-12-22]. https://ieeexplore.ieee.org/document/6460719. |
[16] |
JIANG N, YU F. A cell counting framework based on random forest and density map[J]. Applied Sciences, 2020, 10(23): 8346.
DOI URL |
[17] | GUO Y, STEIN J, WU G, et al. SAU-Net: a universal deep network for cell counting[C]//The 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York: ACM, 2019: 299-306. |
[18] | XIE W, NOBLE J A, ZISSERMAN A. Microscopy cell counting and detection with fully, convolutional regression networks[J]. Computer Methods in Biomechanics and Bio, 2018, 6(3-4): 283-292. |
[19] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
DOI PMID |
[20] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04) [2022-01-10]. https://arxiv.org/abs/1409.1556v6. |
[21] | LIU W, SALZMANN M, FUA P. Context-aware crowd counting[EB/OL]. (2019-04-15) [2021-12-13]. https://infoscience.epfl.ch/record/265758. |
[22] | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[EB/OL]. (2018-06-01) [2021-12-28]. https://arxiv.org/abs/1702.08502v3. |
[23] | KAINZ P, URSCHLER M, SCHULTER S, et al. You should use regression to detect cells[C]//International Conference on Medical Image Computing and Computer Assisted Intervention-MICCAI. Heidelberg:Springer, 2015: 276-283. |
[24] | ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//2016 IEEE Conf- erence on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 589-597 |
[25] | JIANG X, XIAO Z, ZHANG B, et al. Crowd counting and density estimation by trellis encoder-decoder networks[EB/OL]. [2021-12-28]. https://xueshu.baidu.com/usercenter/paper/show?paperid=147606t0n15c0860jb0b0010hr729346. |
[26] | DAI F, LIU H, MA Y, et al. Dense scale network for crowd counting[EB/OL]. (2021-09-01) [2022-12-28]. https://dl.acm.org/doi/10.1145/3460426.3463628. |
[27] | 蒋妮. 基于密度估计的细胞计数方法及其在显微图像中的应用研究[D]. 杭州: 浙江大学, 2021. |
JIANG N. Research on cell counting based on density estimation and its applications in microscopic image[D]. Hangzhou: Zhejiang University, 2021 (in Chinese). |
[1] | HU Xin, ZHOU Yun-qiang, XIAO Jian, YANG Jie. Surface defect detection of threaded steel based on improved YOLOv5 [J]. Journal of Graphics, 2023, 44(3): 427-437. |
[2] | LI Yu, YAN Tian-tian, ZHOU Dong-sheng, WEI Xiao-peng. Natural scene text detection based on attention mechanism and deep multi-scale feature fusion [J]. Journal of Graphics, 2023, 44(3): 473-481. |
[3] | LU Qiu, SHAO Hua-ze, ZHANG Yun-lei. Dynamic balanced multi-scale feature fusion for colorectal polyp segmentation [J]. Journal of Graphics, 2023, 44(2): 225-232. |
[4] | WU Li-zhan, WANG Xia-li, ZHANG Qian, WANG Wei-hao, LI Chao . An object detection method of falling person based on optimized YOLOv5s [J]. Journal of Graphics, 2022, 43(5): 791-802. |
[5] | WANG Su-qin, REN Qi, SHI Min, ZHU Deng-ming. Product surface defect detection and segmentation based on anomaly detection [J]. Journal of Graphics, 2022, 43(3): 377-386. |
[6] | LIAO Zhi-wei , JIN Jing , ZHANG Chao-fan, YANG Xue-zhi. Monocular depth estimation of ASPP networks based on hierarchical compress excitation [J]. Journal of Graphics, 2022, 43(2): 214-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||