针对无人机航拍配电线路时因安全限制导致背景复杂动态、绝缘子缺陷形态不规则、缺陷特征不明显与缺陷信息难捕捉的问题,提出了一种基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法。在第一阶段,通过YOLOv8模型自动提取绝缘子部件图像,为第二阶段绝缘子缺陷检测提供准确的输入,摒除冗余背景信息的影响。在第二阶段,利用ConvNeXt V2主干网络提升模型对不规则形态目标的识别能力,提升网络的特征提取能力;通过在特征融合过程中加入边缘知识融合模块,精准提取缺陷边缘信息;设计自适应形状IoU增强方法,采用自适应训练样本选择策略优化正负样本比例,并使用充分考虑边界框回归样本自身形状和尺度等固有属性的Shape-IoU损失函数,使模型聚焦目标本质特征,改善模型漏检误检情况,提高检测的准确性和鲁棒性。经实验证明,基于改进YOLOv8的配电线路绝缘子缺陷级联检测方法比基线模型平均精确率提高了17.3%,有效提升配电线路绝缘子缺陷检测准确率,为电力系统的安全维护提供了有力的技术支持。