[1] |
王媛媛. 基于增强时空特征的视频异常检测算法研究[D]. 北京: 北京交通大学, 2021.
|
|
WANG Y Y. Research on video anomaly detection algorithm based on enhanced spatio-temporal features[D]. Beijing: Beijing Jiaotong University, 2021 (in Chinese).
|
[2] |
王志国, 章毓晋. 监控视频异常检测: 综述[J]. 清华大学学报: 自然科学版, 2020, 60(6): 518-529.
|
|
WANG Z G, ZHANG Y J. Anomaly detection in surveillance videos: a survey[J]. Journal of Tsinghua University: Science and Technology, 2020, 60(6): 518-529 (in Chinese).
|
[3] |
KIRAN B, THOMAS D, PARAKKAL R. An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos[J]. Journal of Imaging, 2018, 4(2): 36.
DOI
URL
|
[4] |
KRATZ L, NISHINO K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 1446-1453.
|
[5] |
ZHANG Y, LU H C, ZHANG L H, et al. Video anomaly detection based on locality sensitive hashing filters[J]. Pattern Recognition, 2016, 59: 302-311.
DOI
URL
|
[6] |
WANG H, KLÄSER A, SCHMID C, et al. Dense trajectories and motion boundary descriptors for action recognition[J]. International Journal of Computer Vision, 2013, 103(1): 60-79.
DOI
URL
|
[7] |
HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 733-742.
|
[8] |
LUO W X, LIU W, GAO S H. Remembering history with convolutional LSTM for anomaly detection[C]//2017 IEEE International Conference on Multimedia and Expo. New York: IEEE Press, 2017: 439-444.
|
[9] |
DEEPAK K, CHANDRAKALA S, MOHAN C K. Residual spatiotemporal autoencoder for unsupervised video anomaly detection[J]. Signal, Image and Video Processing, 2021, 15(1): 215-222.
DOI
|
[10] |
YAN S J, LIU Y, LI J B, et al. DDGAN: double discriminators GAN for accurate image colorization[C]// 2020 6th International Conference on Big Data and Information Analytics. New York: IEEE Press, 2020: 214-219.
|
[11] |
LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection - A new baseline[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 6536-6545.
|
[12] |
TANG Y, ZHAO L, ZHANG S S, et al. Integrating prediction and reconstruction for anomaly detection[J]. Pattern Recognition Letters, 2020, 129: 123-130.
DOI
URL
|
[13] |
CHANG Y P, TU Z G, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122: 108213.
DOI
URL
|
[14] |
李自强, 王正勇, 陈洪刚, 等. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用, 2021, 41(10): 2997-3003.
DOI
|
|
LI Z Q, WANG Z Y, CHEN H G, et al. Video abnormal behavior detection based on dual prediction model of appearance and motion features[J]. Journal of Computer Applications, 2021, 41(10): 2997-3003 (in Chinese).
DOI
|
[15] |
LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 7082-7092.
|
[16] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 7132-7141.
|
[17] |
GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 1705-1714.
|
[18] |
CHEN W H, CHEN X T, ZHANG J G, et al. Beyond triplet loss: a deep quadruplet network for person re-identification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 1320-1329.
|
[19] |
PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 14360-14369.
|
[20] |
LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//2013 IEEE International Conference on Computer Vision. New York: IEEE Press, 2013: 2720-2727.
|
[21] |
YE M C, PENG X J, GAN W H, et al. AnoPCN: video anomaly detection via deep predictive coding network[C]//The 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1805-1813.
|
[22] |
WANG X Z, CHE Z P, JIANG B, et al. Robust unsupervised video anomaly detection by multipath frame prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2301-2312.
DOI
URL
|