Journal of Graphics ›› 2023, Vol. 44 ›› Issue (1): 146-157.DOI: 10.11996/JG.j.2095-302X.2023010146
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
WANG Jia-dong1(), CAO Juan2, CHEN Zhong-gui1(
)
Received:
2022-06-20
Revised:
2022-08-01
Online:
2023-10-31
Published:
2023-02-16
Contact:
CHEN Zhong-gui
About author:
WANG Jia-dong (1997-), master student. His main research interest covers computer graphics. E-mail:wjd97zzz@gmail.com
Supported by:
CLC Number:
WANG Jia-dong, CAO Juan, CHEN Zhong-gui. Feature-preserving skeleton extraction algorithm for point clouds[J]. Journal of Graphics, 2023, 44(1): 146-157.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023010146
Fig. 5 The process of cluster merging ((a) Initial clustering, the clusters are all on the model surface; (b) Clustering results after several executions; (c) Clustering results when the legs form a linear structure)
Fig. 6 Results of curve skeleton interpolation ((a) Rough curve skeleton; (b) Thick and thin branch before insertion operation; (c) Thick and thin branch after insertion operation; (d) Final curve skeleton)
模型 | 原始点数 | 描述 |
---|---|---|
Armadillo | 43 408 | 无噪声的犰狳模型 |
Cactus | 14 626 | 无噪声的仙人掌模型 |
G | 26 483 | 有噪声的字母“G”模型 |
Human | 14 522 | 有噪声的人模型 |
Table 1 Point cloud models for algorithm comparison
模型 | 原始点数 | 描述 |
---|---|---|
Armadillo | 43 408 | 无噪声的犰狳模型 |
Cactus | 14 626 | 无噪声的仙人掌模型 |
G | 26 483 | 有噪声的字母“G”模型 |
Human | 14 522 | 有噪声的人模型 |
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.045 8 | 0.072 7 | 0.087 4 | 0.035 1 |
Cactus | 0.013 9 | 0.023 0 | 0.030 6 | 0.028 7 |
G | 0.145 0 | 0.080 7 | 0.086 6 | 0.029 0 |
Human | 0.079 6 | 0.050 3 | 0.062 5 | 0.044 5 |
Table 2 One-sided Hausdorff distance comparison
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.045 8 | 0.072 7 | 0.087 4 | 0.035 1 |
Cactus | 0.013 9 | 0.023 0 | 0.030 6 | 0.028 7 |
G | 0.145 0 | 0.080 7 | 0.086 6 | 0.029 0 |
Human | 0.079 6 | 0.050 3 | 0.062 5 | 0.044 5 |
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.000 171 0 | 0.000 672 0 | 0.001 110 0 | 0.000 094 6 |
Cactus | 0.000 015 3 | 0.000 062 2 | 0.000 175 0 | 0.000 036 7 |
G | 0.003 480 0 | 0.001 330 0 | 0.002 220 0 | 0.000 052 9 |
Human | 0.000 617 0 | 0.000 212 0 | 0.000 542 0 | 0.000 133 0 |
Table 3 One-sided Chamfer distance comparison
模型 | LBC | L1中值 | MDCS | 本文 |
---|---|---|---|---|
Armadillo | 0.000 171 0 | 0.000 672 0 | 0.001 110 0 | 0.000 094 6 |
Cactus | 0.000 015 3 | 0.000 062 2 | 0.000 175 0 | 0.000 036 7 |
G | 0.003 480 0 | 0.001 330 0 | 0.002 220 0 | 0.000 052 9 |
Human | 0.000 617 0 | 0.000 212 0 | 0.000 542 0 | 0.000 133 0 |
Fig. 7 Curve skeleton results of different point clouds, the models are Armadillo, Cactus, G, Human from top to bottom ((a) MCS algorithm on grid; (b) LBC; (c) L1; (d) MDCS; (e) Ours)
高斯噪声方差 | 单向豪斯多夫距离 | 单向倒角距离 |
---|---|---|
无噪声 | 0.021 5 | 0.000 039 3 |
σ = 0.005 | 0.030 0 | 0.000 071 3 |
σ = 0.01 | 0.038 2 | 0.000 125 0 |
σ = 0.02 | 0.110 0 | 0.001 580 0 |
Table 4 Quantitative indicators of the models in Figure 9
高斯噪声方差 | 单向豪斯多夫距离 | 单向倒角距离 |
---|---|---|
无噪声 | 0.021 5 | 0.000 039 3 |
σ = 0.005 | 0.030 0 | 0.000 071 3 |
σ = 0.01 | 0.038 2 | 0.000 125 0 |
σ = 0.02 | 0.110 0 | 0.001 580 0 |
步骤 | Cactus | G | Armadillo |
---|---|---|---|
DKNN | 2.815 | 10.339 | 11.024 |
最优传输与坐标更新 | 86.849 | 260.037 | 943.829 |
簇的调整与合并 | 141.372 | 512.974 | 1203.870 |
合计 | 231.036 | 783.350 | 2158.723 |
Table 5 Running time of each part of the algorithm (s)
步骤 | Cactus | G | Armadillo |
---|---|---|---|
DKNN | 2.815 | 10.339 | 11.024 |
最优传输与坐标更新 | 86.849 | 260.037 | 943.829 |
簇的调整与合并 | 141.372 | 512.974 | 1203.870 |
合计 | 231.036 | 783.350 | 2158.723 |
算法 | Cactus | G | Armadillo |
---|---|---|---|
OTC (本文) | 231.036 | 783.3500 | 2158.7230 |
LBC | 68.129 | 1834.4420 | 635.4424 |
L1中值 | 114.545 | 510.6930 | 735.9220 |
MDCS | 98.704 | 175.5040 | 4604.5570 |
Table 6 Running time comparison with other algorithms (s)
算法 | Cactus | G | Armadillo |
---|---|---|---|
OTC (本文) | 231.036 | 783.3500 | 2158.7230 |
LBC | 68.129 | 1834.4420 | 635.4424 |
L1中值 | 114.545 | 510.6930 | 735.9220 |
MDCS | 98.704 | 175.5040 | 4604.5570 |
[1] | LOVATO C, CASTELLANI U, GIACHETTI A. Automatic segmentation of scanned human body using curve skeleton analysis[M]//Computer Vision/Computer Graphics Collaboration Techniques. Heidelberg: Springer, 2009: 34-45. |
[2] |
LI J T, LU G D. Skeleton driven animation based on implicit skinning[J]. Computers & Graphics, 2011, 35(5): 945-954.
DOI URL |
[3] | BERGER M, TAGLIASACCHI A, SEVERSKY L, et al. State of the art in surface reconstruction from point clouds[EB/OL]. [2022-02-21].http://diglib.eg.org/handle/10.2312/egst.20141040.161-185. |
[4] | LIN S J, GUO Y H, LIANG Y, et al. 3D model retrieval based on skeleton[C]//2015 IEEE International Conference on Networking, Architecture and Storage (NAS). New York: IEEE Press, 2015: 321-325. |
[5] | OGNIEWICZ R, ILG M. Voronoi skeletons: theory and applications[C]//1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 1992: 63-69. |
[6] | TAGLIASACCHI A, ZHANG H, COHEN-OR D. Curve skeleton extraction from incomplete point cloud[C]//SIGGRAPHʹ09: ACM SIGGRAPH 2008 Papers. New York: ACM, 2009: 1-9. |
[7] | CAO J J, TAGLIASACCHI A, OLSON M, et al. Point cloud skeletons via Laplacian based contraction[C]//2010 Shape Modeling International Conference. New York: IEEE Press, 2010: 187-197. |
[8] | AU O K C, TAI C L, CHU H K, et al. Skeleton extraction by mesh contraction[C]//SIGGRAPHʹ08: ACM SIGGRAPH 2008 Papers. New York: ACM, 2008: 1-10. |
[9] | HUANG H, WU S H, COHEN-OR D, et al. L1-medial skeleton of point cloud[J]. ACM Transactions on Graphics, 2013, 32(4): 1-65. |
[10] |
QIN H X, HAN J, LI N, et al. Mass-driven topology-aware curve skeleton extraction from incomplete point clouds[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(9): 2805-2817.
DOI URL |
[11] |
AGUEH M, CARLIER G. Barycenters in the wasserstein space[J]. SIAM Journal on Mathematical Analysis, 2011, 43(2): 904-924.
DOI URL |
[12] |
JIANG A L, LIU J, ZHOU J L, et al. Skeleton extraction from point clouds of trees with complex branches via graph contraction[J]. The Visual Computer, 2021, 37(8): 2235-2251.
DOI |
[13] |
ZHANG Y, CHEN L F, TAN F, et al. An improved ℓ1 median model for extracting 3D human body curve-skeleton[J]. Multimedia Tools and Applications, 2021, 80(24): 33547-33571.
DOI |
[14] | MONGE G. Mémoire sur la théorie des déblais et des remblais[EB/OL]. [2022-02-21].https://cir.nii.ac.jp/crid/1572261550791499008. |
[15] | KANTOROVICH L. On the transfer of masses[EB/OL]. [2022-02-21].https://cir.nii.ac.jp/crid/1570009750977811456. |
[16] | AHUJA R. Network flows[EB/OL]. [2022-02-21]. https://dspace.mit.edu/bitstream/handle/1721.1/49424/networkflows00ahuj.pdf. |
[17] | BONNEEL N, VAN DE PANNE M, PARIS S, et al. Displacement interpolation using Lagrangian mass transport[C]//2011 SIGGRAPH Asia Conference. New York: ACM, 2011: 1-12. |
[18] | DAMIAN K, COMM B, GARRET M. The minimum cost flow problem and the network simplex method[D]. Irlande: Université College Gublin, 1991. |
[19] |
VALETTE S, CHASSERY J M. Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening[J]. Computer Graphics Forum, 2004, 23(3SPEC.ISS.): 381-389.
DOI URL |
[20] | NICHOLAS S. Polyscope[EB/OL]. (2021-12-03) [2022-02-21].https://github.com/nmwsharp/polyscope. |
[21] | TAGLIASACCHIA. Point cloud skeletons via laplacian-based contraction[EB/OL]. (2015-01-01) [2022-02-21].https://github.com/taiya/cloudcontr. |
[22] | HUANG H. L1-medial skeleton of point cloud[EB/OL]. (2013-01-01) [2022-02-21].https://vcc.tech/research/2013/L1skeleton. |
[23] | QIN H X. Mass driven curve skeleton[EB/OL]. (2020-01-01) [2022-02-21].https://github.com/Hongxing-CQU/Mass-driven-Curve-Skeleton. |
[24] | TAGLIASACCHI A, ALHASHIM I, OLSON M, et al. Mean curvature skeletons[J]. Eurographics Symposium on Geometry Processing, 2012, 31(5): 1735-1744. |
[25] | GAO X. Triangulated surface mesh skeletonization[EB/OL]. [2022-02-21]. https://doc.cgal.org/5.2.4/Surface_mesh_Skeletonization. |
[26] | VISIONAIR. Aim@Shape[EB/OL]. (2021-08-01) [2022-02-21]. http://visionair.ge.imati.cnr.it/ontologies/shapes. |
[27] | SIDDIQI K. McGill 3D shape benchmark[EB/OL]. ( 2005-12-14) [2022-02-21]. https:/cim.mcgill.ca/-shape/benchMark/. |
[28] | Stanford University Computer Graphics Laboratory. The stanford 3D scanning repository[EB/OL]. (2014-08-19) [2022-02-21].http://graphics.stanford.edu/data/3Dscanrep/. |
[29] | CIGNONI. MeshLab[EB/OL]. (2022-02-01) [2022-02-21].Https://github.com/cnr-isti-vclab/meshlab. |
[1] | ZHU Lei, LI Dong-biao, YAN Xing-zhi, LIU Xiang-yang, SHEN Cai-hua. Intelligent detection method of tunnel cracks based on improved Mask R-CNN deep learning algorithm [J]. Journal of Graphics, 2023, 44(1): 177-183. |
[2] | HUANG Xiang, WANG Hong-xing, GU Xu, MENG Yue, WANG Hao-yu. A new 3D point clouds feature selection method using specific outliers optimization [J]. Journal of Graphics, 2022, 43(5): 884-891. |
[3] | XU Chen, NI Rong-rong, ZHAO Yao, . 3D object detection algorithm combined with sparse point cloud completion [J]. Journal of Graphics, 2021, 42(1): 37-43. |
[4] | GAO Chun-yan, SHEN Zi-ming, ZHANG Ming-lu, TIAN Ying. A RANSAC-Based Cylindrical Axis Feature Representation for Point Clouds [J]. Journal of Graphics, 2019, 40(3): 539-544. |
[5] | Cai Peng, Yin Baocai, Kong Dehui. A Ray Tracing Method Based on the Nearest Points [J]. Journal of Graphics, 2013, 34(3): 1-6. |
[6] | Cheng Zhiquan, Ye Yongkai, Li Bao. A RANSAC-based ellipsoid extraction algorithm [J]. Journal of Graphics, 2012, 33(2): 68-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||