Journal of Graphics ›› 2023, Vol. 44 ›› Issue (3): 438-447.DOI: 10.11996/JG.j.2095-302X.2023030438
Previous Articles Next Articles
					
													LI Gang1,2(
), ZHANG Yun-tao1, WANG Wen-kai1, ZHANG Dong-yang1(
)
												  
						
						
						
					
				
Received:2022-08-12
															
							
															
							
																	Accepted:2022-12-28
															
							
																	Online:2023-06-30
															
							
																	Published:2023-06-30
															
						Contact:
								ZHANG Dong-yang (1981-), engineer, master. His main research interest covers computer vision. E-mail:zhdy@ncepu.edu.cn   
													About author:LI Gang (1980-), associate professor, Ph.D. His main research interests cover prognostics and health management, etc. E-mail:ququ_er2003@126.com
Supported by:CLC Number:
LI Gang, ZHANG Yun-tao, WANG Wen-kai, ZHANG Dong-yang. Defect detection method of transmission line bolts based on DETR and prior knowledge fusion[J]. Journal of Graphics, 2023, 44(3): 438-447.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023030438
| 迭代 次数  |  学习率 | |||
|---|---|---|---|---|
| 0.01 | 0.001 | 0.000 5 | 0.000 1 | |
| 1 000 | 46.73 | 45.39 | 45.23 | 44.85 | 
| 2 000 | 48.65 | 45.63 | 48.14 | 46.32 | 
| 4 000 | 49.11 | 49.17 | 49.96 | 47.64 | 
| 6 000 | 49.30 | 48.96 | 49.96 | 48.59 | 
Table 1 The average detection rate of the model under different learning rates and iterations (%)
| 迭代 次数  |  学习率 | |||
|---|---|---|---|---|
| 0.01 | 0.001 | 0.000 5 | 0.000 1 | |
| 1 000 | 46.73 | 45.39 | 45.23 | 44.85 | 
| 2 000 | 48.65 | 45.63 | 48.14 | 46.32 | 
| 4 000 | 49.11 | 49.17 | 49.96 | 47.64 | 
| 6 000 | 49.30 | 48.96 | 49.96 | 48.59 | 
| Mini-batch | AP | ||||
|---|---|---|---|---|---|
| 正常螺栓 | 缺销钉 | 缺螺母 | 缺垫片 | AP_0.5 | |
| 8 | 71.6 | 59.6 | 53.6 | 55.6 | 60.1 | 
| 16 | 75.0 | 61.4 | 54.1 | 58.7 | 62.3 | 
| 32 | 74.7 | 64.0 | 54.5 | 60.4 | 63.4 | 
| 64 | 78.6 | 57.6 | 54.7 | 61.1 | 63.0 | 
| 128 | 83.3 | 51.1 | 54.2 | 61.8 | 62.6 | 
Table 2 The average precision and average precision of each category corresponding to different Mini-batch parameters (%)
| Mini-batch | AP | ||||
|---|---|---|---|---|---|
| 正常螺栓 | 缺销钉 | 缺螺母 | 缺垫片 | AP_0.5 | |
| 8 | 71.6 | 59.6 | 53.6 | 55.6 | 60.1 | 
| 16 | 75.0 | 61.4 | 54.1 | 58.7 | 62.3 | 
| 32 | 74.7 | 64.0 | 54.5 | 60.4 | 63.4 | 
| 64 | 78.6 | 57.6 | 54.7 | 61.1 | 63.0 | 
| 128 | 83.3 | 51.1 | 54.2 | 61.8 | 62.6 | 
| Encoder参数 | 平均检出率 | |||||
|---|---|---|---|---|---|---|
| Decoder参数1 | Decoder参数2 | Decoder参数4 | Decoder参数6 | Decoder参数8 | Decoder参数10 | |
| 2 | 41.1 | 44.6 | 46.5 | 50.2 | 53.1 | 52.2 | 
| 4 | 42.3 | 47.5 | 49.2 | 51.9 | 54.7 | 52.6 | 
| 6 | 44.5 | 47.9 | 51.8 | 54.3 | 55.6 | 53.2 | 
| 8 | 44.9 | 48.7 | 53.1 | 52.6 | 54.8 | 51.0 | 
| 10 | 44.6 | 50.4 | 53.5 | 54.0 | 52.4 | 49.9 | 
Table 3 Average detection rate of models corresponding to different Encoder and Decoder parameters (%)
| Encoder参数 | 平均检出率 | |||||
|---|---|---|---|---|---|---|
| Decoder参数1 | Decoder参数2 | Decoder参数4 | Decoder参数6 | Decoder参数8 | Decoder参数10 | |
| 2 | 41.1 | 44.6 | 46.5 | 50.2 | 53.1 | 52.2 | 
| 4 | 42.3 | 47.5 | 49.2 | 51.9 | 54.7 | 52.6 | 
| 6 | 44.5 | 47.9 | 51.8 | 54.3 | 55.6 | 53.2 | 
| 8 | 44.9 | 48.7 | 53.1 | 52.6 | 54.8 | 51.0 | 
| 10 | 44.6 | 50.4 | 53.5 | 54.0 | 52.4 | 49.9 | 
| 典型金具 | 正常 | 缺垫片 | 缺螺母 | 缺销钉 | 
|---|---|---|---|---|
| 挂点 | 1349 | 312 | 41 | 109 | 
| 防震锤 | 210 | 217 | 12 | 37 | 
| 绝缘子 | 356 | 112 | 26 | 75 | 
| 间隔棒 | 145 | 15 | 6 | 4 | 
Table 4 Statistical table of the number of samples of various types of bolts on different fittings
| 典型金具 | 正常 | 缺垫片 | 缺螺母 | 缺销钉 | 
|---|---|---|---|---|
| 挂点 | 1349 | 312 | 41 | 109 | 
| 防震锤 | 210 | 217 | 12 | 37 | 
| 绝缘子 | 356 | 112 | 26 | 75 | 
| 间隔棒 | 145 | 15 | 6 | 4 | 
| 金具部件位置 | 正常状态下螺栓元件组成 | 
|---|---|
| 挂点 | 螺母+销钉或垫片+销钉 | 
| 防震锤 | 螺母+销钉或垫片+销钉 | 
| 绝缘子 | 螺母+销钉 | 
| 间隔棒 | 垫片+螺母+销钉或垫片+销钉 | 
Table 5 The composition of the components in the normal state of the bolts on different fittings
| 金具部件位置 | 正常状态下螺栓元件组成 | 
|---|---|
| 挂点 | 螺母+销钉或垫片+销钉 | 
| 防震锤 | 螺母+销钉或垫片+销钉 | 
| 绝缘子 | 螺母+销钉 | 
| 间隔棒 | 垫片+螺母+销钉或垫片+销钉 | 
| 图像 | 先验知识 | 标签信息 | 
|---|---|---|
 ![]()  |  挂点 主视图  |  ls-zc | 
 ![]()  |  防震锤 俯视图  |  ls-qdp | 
 ![]()  |  挂点 俯视图  |  ls-qlm | 
 ![]()  |  间隔棒 主视图  |  ls-qxd | 
Table 6 Partial bolt defect image and corresponding label example
| 图像 | 先验知识 | 标签信息 | 
|---|---|---|
 ![]()  |  挂点 主视图  |  ls-zc | 
 ![]()  |  防震锤 俯视图  |  ls-qdp | 
 ![]()  |  挂点 俯视图  |  ls-qlm | 
 ![]()  |  间隔棒 主视图  |  ls-qxd | 
| 方法 | mAP (%) | FPS (s) | Weights (MB) | 
|---|---|---|---|
| YOLOv5l | 57.9 | 25.7 | 87.33 | 
| Faster R-CNN | 65.4 | 6.9 | 141.47 | 
| DETR | 67.8 | 7.6 | 126.07 | 
| 改进DETR | 70.6 | 5.5 | 174.72 | 
Table 7 Comparison results of different models
| 方法 | mAP (%) | FPS (s) | Weights (MB) | 
|---|---|---|---|
| YOLOv5l | 57.9 | 25.7 | 87.33 | 
| Faster R-CNN | 65.4 | 6.9 | 141.47 | 
| DETR | 67.8 | 7.6 | 126.07 | 
| 改进DETR | 70.6 | 5.5 | 174.72 | 
| 组别 | 方法 | mAP (%) | FPS (s) | 
|---|---|---|---|
| 1 | DETR | 67.8 | 7.6 | 
| 2 | + CILLF | 69.3 | 7.1 | 
| 3 | + CILLF +V-K Attention | 70.6 | 5.5 | 
Table 8 Comprehensive use of different improvement strategies to compare the detection effects
| 组别 | 方法 | mAP (%) | FPS (s) | 
|---|---|---|---|
| 1 | DETR | 67.8 | 7.6 | 
| 2 | + CILLF | 69.3 | 7.1 | 
| 3 | + CILLF +V-K Attention | 70.6 | 5.5 | 
																													Fig. 7 Comparison of detection results between mainstream target detection algorithms and improved DETR model ((a) Faster R-CNN; (b) YOLOv5l; (c) Improved DETR)
| [1] | 赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望[J]. 电力科学与工程, 2020, 36(1): 1-8. | 
| ZHAO Z B, ZHANG W, ZHAI Y J, et al. Concept, research status and prospect of electric power vision technology[J]. Electric Power Science and Engineering, 2020, 36(1): 1-8. (in Chinese) | |
| [2] | ZHOU X Y, ZHUO J C, KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 850-859. | 
| [3] | 孙宗康, 饶睦敏, 曹裕灵, 等. 基于小样本不均衡数据的供水管道泄漏智能检测算法[J]. 图学学报, 2022, 43(5): 825-831. | 
| SUN Z K, RAO M M, CAO Y L, et al. Water supply pipeline leakage intelligent detection algorithm based on small and unbalanced data[J]. Journal of Graphics, 2022, 43(5): 825-831. (in Chinese) | |
| [4] | 奚川龙. 基于路侧毫米波雷达和相机信息融合的车辆目标检测研究[D]. 重庆: 重庆邮电大学, 2021. | 
| XI C L. Research on vehicle target detection based on information fusion of roadside millimeter wave radar and camera[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021. (in Chinese) | |
| [5] | 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. | 
| ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560. (in Chinese) | |
| [6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788. | 
| [7] | 谷雨, 赵军. 列车闸瓦钎及闸瓦故障图像检测算法研究[J/OL]. (2022-07-20) [2022-08-08]. http://kns.cnki.net/kcms/det-ail/10.1034.T.20220719.1607.002.html. | 
| GU Y, ZHAO J. Research on image detection algorithm of freight train brake shoe bolt and brake shoe fault[J/OL]. (2022-07-20) [2022-08-08]. http://kns.cnki.net/kcms/det-ail/10.1034.T.20220719.1607.002.html. (in Chinese) | |
| [8] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. | 
| [9] |  
											 YI J R, WU P X, METAXAS D N. ASSD: attentive single shot multibox detector[J]. Computer Vision and Image Understanding, 2019, 189: 102827. 
																							 DOI URL  | 
										
| [10] | 赵振兵, 李延旭, 甄珍, 等. 结合KL散度和形状约束的Faster R-CNN典型金具检测方法[J]. 高电压技术, 2020, 46(9): 3018-3026. | 
| ZHAO Z B, LI Y X, ZHEN Z, et al. Typical fittings detection method with faster R-CNN combining KL divergence and shape constraints[J]. High Voltage Engineering, 2020, 46(9): 3018-3026. (in Chinese) | |
| [11] | 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246. | 
| ZHAI Y J, YANG X, ZHAO Z B, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 237-246. (in Chinese) | |
| [12] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. | 
| [13] | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2022-07-15]. https://arxiv.org/abs/2010.04159. | 
| [14] | 张乃雪, 钟羽中, 赵涛, 等. 基于Smooth-DETR的产品表面小尺寸缺陷检测算法[J]. 计算机应用研究, 2022, 39(8): 2520-2525. | 
| ZHANG N X, ZHONG Y Z, ZHAO T, et al. Detection method for small-size defects based on Smooth-DETR[J]. Application Research of Computers, 2022, 39(8): 2520-2525. (in Chinese) | |
| [15] | 熊怡梦. 基于标签语义和Transformer的元学习小样本目标检测方法研究[D]. 西安: 西安电子科技大学, 2021. | 
| XIONG Y M. Label semantics and Transformer for meta learning few-shot object detection[D]. Xi′an: Xidian University, 2021. (in Chinese) | |
| [16] | LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query DeNoising[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 13609-13617. | 
| [17] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 213-229. | 
| [18] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002. | 
| [19] |  
											 孟晓娟, 张月琴, 郝晓丽, 等. 多分类深度卷积生成对抗网络的皮带撕裂检测[J]. 计算机工程与应用, 2021, 57(16): 269-275. 
																							 DOI  | 
										
|  
											 MENG X J, ZHANG Y Q, HAO X L, et al. Multi-class deep convolutional generative adversarial networks for belt tear detection[J]. Computer Engineering and Applications, 2021, 57(16): 269-275. (in Chinese) 
																							 DOI  | 
										|
| [20] | 李军, 李明, 曾蒸, 等. 基于改进激活函数和学习率的双向LSTM研究[J]. 重庆师范大学学报: 自然科学版, 2021, 38(2): 70-76. | 
| LI J, LI M, ZENG Z, et al. Research on bidirectional LSTM based on improved activation function and learning rate[J]. Journal of Chongqing Normal University: Natural Science, 2021, 38(2): 70-76. (in Chinese) | |
| [21] | 何颖宣. 基于多标签学习的螺栓多属性分类方法研究[D]. 北京: 华北电力大学, 2021. | 
| HE Y X. Research on bolt multi-attribute classification method based on multi-label learning[D]. Beijing: North China Electric Power University, 2021. (in Chinese) | 
| [1] | 
														HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. 
														
															 
	Multi-class defect target detection method for transmission lines
based on TR-YOLOv5 
 
														[J]. Journal of Graphics, 2023, 44(4): 667-676.
													 | 
												
| [2] | 
														PAN Dong-hui, JIN Ying-han, SUN Xu, LIU Yu-sheng, ZHANG Dong-liang. 
														
															 
	CTH-Net: CNN-Transformer hybrid network for garment image
generation from sketches and color points
 
														[J]. Journal of Graphics, 2023, 44(1): 120-130.
													 | 
												
| [3] | WANG Yu-ping , ZENG Yi , LI Sheng-hui , ZHANG Lei. A Transformer-based 3D human pose estimation method [J]. Journal of Graphics, 2023, 44(1): 139-145. | 
| [4] | HU Hai-tao , DU Hao-chen , WANG Su-qin , SHI Min , ZHU Deng-ming, . Improved YOLOX method for detecting surface defects of drug blister aluminum foil [J]. Journal of Graphics, 2022, 43(5): 803-814. | 
| [5] | CHANG Shengjie1,2, DANG Jianwu1,2, WANG Yangping1,2. BIM Model and Information Integration of Traction Substation Equipment Based on Revit [J]. Journal of Graphics, 2018, 39(4): 771-777. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||