Journal of Graphics ›› 2023, Vol. 44 ›› Issue (5): 879-889.DOI: 10.11996/JG.j.2095-302X.2023050879
• Image Processing and Computer Vision • Previous Articles Next Articles
JIANG Wu-jun1(), ZHI Li-jia1,2,3(
), ZHANG Shao-min1,2,3, ZHOU Tao1,3
Received:
2023-05-25
Accepted:
2023-08-19
Online:
2023-10-31
Published:
2023-10-31
Contact:
ZHI Li-jia (1977-), lecturer, Ph.D. His main research interests cover computer vision, medical image analysis and processing, etc. E-mail:About author:
JIANG Wu-jun (1998-), master student. His main research interests cover computer vision, medical image analysis and processing. E-mail:184611875@qq.com
Supported by:
CLC Number:
JIANG Wu-jun, ZHI Li-jia, ZHANG Shao-min, ZHOU Tao. CT image segmentation of lung nodules based on channel residual nested U structure[J]. Journal of Graphics, 2023, 44(5): 879-889.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2023050879
方法 | 数据集 | 输入尺寸 | 样本数量 | 交叉验证 | DSC | 样本选取策略 | |
---|---|---|---|---|---|---|---|
传统肺结 节分割 方法 | 文献[ | 模拟数据 LIDC-IDRI | - | 108 82 | 否 | 93.30 90.10 | 管电流:30~197 mA,切片厚度:0.625 mm 管电流:40~582 mA,切片厚度:0.625~3.000 mm |
文献[ | LIDC-IDRI LC015 | - | 2 651 1 186 | 否 | 69.90 76.00 | - | |
基于深度 学习的肺 结节分割 方法 | 文献[ | LIDC-IDRI | 64×64×32 | 728 | 否 | 88.18 | 切片厚度≤2.5 mm、肺结节直径≥3 mm |
文献[ | LIDC-IDRI 私有 | 256×256×3 | 2 635 3 200 | 5-折交叉 | 82.05 81.61 | 依据LIDC结节尺寸报告 由至少2名经验丰富的医生筛选 | |
文献[ | LIDC-IDRI | 48×48×16 | 1 074 | 否 | 80.50 | 至少3名医生进行标注 | |
文献[ | LIDC-IDRI | 64×64×64 | - | 否 | 83.00 | 随机选取300个CT文件 | |
文献[ | Luna16 ILND | 64×64×32 | 835 200 | 否 | 80.74 76.36 | 切片厚度≤2.5 mm、肺结节直径≥3 mm 丢弃切片数量太少或数据不完整的CT | |
文献[ | LIDC-IDRI | 64×64×64 | 1 979 | 否 | 86.75 | 肺结节直径≥3 mm | |
文献[ | Luna16 | 64×64×32 | 1 086 | 否 | 79.60 | 切片厚度≤2.5 mm、肺结节直径≥3 mm | |
文献[ | LIDC-IDRI | 64×64×64 | 2 885 | 否 | 75.00 | 7 mm肺结节直径≤45 mm | |
文献[ | LIDC-IDRI | - | 1 131 | 否 | 80.89 | 肺结节直径≥3 mm | |
本文方法 | LIDC-IDRI | 64×64×64 | 1 186 | 5-折交叉 | 83.83 | 切片厚度≤2.5 mm、肺结节直径≥3 mm |
Table 1 Summary of different segmentation methods for pulmonary nodules
方法 | 数据集 | 输入尺寸 | 样本数量 | 交叉验证 | DSC | 样本选取策略 | |
---|---|---|---|---|---|---|---|
传统肺结 节分割 方法 | 文献[ | 模拟数据 LIDC-IDRI | - | 108 82 | 否 | 93.30 90.10 | 管电流:30~197 mA,切片厚度:0.625 mm 管电流:40~582 mA,切片厚度:0.625~3.000 mm |
文献[ | LIDC-IDRI LC015 | - | 2 651 1 186 | 否 | 69.90 76.00 | - | |
基于深度 学习的肺 结节分割 方法 | 文献[ | LIDC-IDRI | 64×64×32 | 728 | 否 | 88.18 | 切片厚度≤2.5 mm、肺结节直径≥3 mm |
文献[ | LIDC-IDRI 私有 | 256×256×3 | 2 635 3 200 | 5-折交叉 | 82.05 81.61 | 依据LIDC结节尺寸报告 由至少2名经验丰富的医生筛选 | |
文献[ | LIDC-IDRI | 48×48×16 | 1 074 | 否 | 80.50 | 至少3名医生进行标注 | |
文献[ | LIDC-IDRI | 64×64×64 | - | 否 | 83.00 | 随机选取300个CT文件 | |
文献[ | Luna16 ILND | 64×64×32 | 835 200 | 否 | 80.74 76.36 | 切片厚度≤2.5 mm、肺结节直径≥3 mm 丢弃切片数量太少或数据不完整的CT | |
文献[ | LIDC-IDRI | 64×64×64 | 1 979 | 否 | 86.75 | 肺结节直径≥3 mm | |
文献[ | Luna16 | 64×64×32 | 1 086 | 否 | 79.60 | 切片厚度≤2.5 mm、肺结节直径≥3 mm | |
文献[ | LIDC-IDRI | 64×64×64 | 2 885 | 否 | 75.00 | 7 mm肺结节直径≤45 mm | |
文献[ | LIDC-IDRI | - | 1 131 | 否 | 80.89 | 肺结节直径≥3 mm | |
本文方法 | LIDC-IDRI | 64×64×64 | 1 186 | 5-折交叉 | 83.83 | 切片厚度≤2.5 mm、肺结节直径≥3 mm |
方法 | 评估指标 | ||||||
---|---|---|---|---|---|---|---|
PRE | SEN | DSC | mIoU | Param | FLOPs | ||
UNet | 82.16 | 81.99 | 79.85 | 84.00 | 16.32 | 237.01 | |
YNet | 80.27 | 83.87 | 79.53 | 83.71 | 33.28 | 297.05 | |
UNet++ | 83.49 | 84.32 | 82.27 | 85.37 | 9.64 | 74.54 | |
WingsNet | 83.02 | 84.79 | 82.44 | 85.42 | 1.47 | 38.55 | |
ReconNet | 82.94 | 82.22 | 80.46 | 84.34 | 4.08 | 59.64 | |
PCAMNet | 82.83 | 85.10 | 82.57 | 85.51 | 9.44 | 12.30 | |
采用Transformer技术的3D分割模型 | TransBTS | 83.22 | 78.93 | 78.67 | 83.05 | 30.95 | 32.68 |
Unetr | 83.57 | 79.96 | 79.34 | 83.49 | 92.34 | 21.49 | |
ASA | 82.17 | 84.57 | 81.50 | 84.86 | 85.29 | 52.86 | |
本文方法 | 84.15 | 86.03 | 83.83 | 86.40 | 44.70 | 101.72 |
Table 2 Comparison with open source methods
方法 | 评估指标 | ||||||
---|---|---|---|---|---|---|---|
PRE | SEN | DSC | mIoU | Param | FLOPs | ||
UNet | 82.16 | 81.99 | 79.85 | 84.00 | 16.32 | 237.01 | |
YNet | 80.27 | 83.87 | 79.53 | 83.71 | 33.28 | 297.05 | |
UNet++ | 83.49 | 84.32 | 82.27 | 85.37 | 9.64 | 74.54 | |
WingsNet | 83.02 | 84.79 | 82.44 | 85.42 | 1.47 | 38.55 | |
ReconNet | 82.94 | 82.22 | 80.46 | 84.34 | 4.08 | 59.64 | |
PCAMNet | 82.83 | 85.10 | 82.57 | 85.51 | 9.44 | 12.30 | |
采用Transformer技术的3D分割模型 | TransBTS | 83.22 | 78.93 | 78.67 | 83.05 | 30.95 | 32.68 |
Unetr | 83.57 | 79.96 | 79.34 | 83.49 | 92.34 | 21.49 | |
ASA | 82.17 | 84.57 | 81.50 | 84.86 | 85.29 | 52.86 | |
本文方法 | 84.15 | 86.03 | 83.83 | 86.40 | 44.70 | 101.72 |
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU |
---|---|---|---|---|---|---|---|---|---|---|---|
Base | RSU7 | RSU6 | RSU5 | RSU4 | RSU4F | 51.52 | 133.32 | 83.91 | 84.41 | 82.77 | 85.67 |
BaseSIPU | SIPU(U7) | RSU6 | RSU5 | RSU4 | RSU4F | 51.52 | 133.30 | 84.99 | 83.64 | 82.96 | 85.78 |
BaseUall | SIPU | U6 | U5 | U4 | U4F | 51.52 | 133.30 | 83.36 | 85.57 | 83.08 | 85.87 |
Table 3 Shallow information processing U-structure verification
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU |
---|---|---|---|---|---|---|---|---|---|---|---|
Base | RSU7 | RSU6 | RSU5 | RSU4 | RSU4F | 51.52 | 133.32 | 83.91 | 84.41 | 82.77 | 85.67 |
BaseSIPU | SIPU(U7) | RSU6 | RSU5 | RSU4 | RSU4F | 51.52 | 133.30 | 84.99 | 83.64 | 82.96 | 85.78 |
BaseUall | SIPU | U6 | U5 | U4 | U4F | 51.52 | 133.30 | 83.36 | 85.57 | 83.08 | 85.87 |
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU |
---|---|---|---|---|---|---|---|---|---|---|---|
UNet | 基本块由2个CBR构成 | 16.32 | 237.01 | 82.16 | 81.99 | 79.85 | 84.00 | ||||
ResidualUNet[ | 基本块由2个CBR和残差结构构成 | 141.24 | 398.60 | 84.82 | 82.17 | 81.85 | 85.13 | ||||
BaseU | 基本块由一个CBR构成 | 8.21 | 43.68 | 82.54 | 84.17 | 81.44 | 84.86 | ||||
BaseRes | 基本块基础上添加残差连接 | 15.00 | 72.71 | 34.27 | 78.26 | 32.79 | 44.65 | ||||
BaseCR | 基本块基础上添加通道残差结构 | 8.45 | 50.30 | 84.91 | 84.17 | 83.04 | 85.93 |
Table 4 Channel residual with general basic block
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU |
---|---|---|---|---|---|---|---|---|---|---|---|
UNet | 基本块由2个CBR构成 | 16.32 | 237.01 | 82.16 | 81.99 | 79.85 | 84.00 | ||||
ResidualUNet[ | 基本块由2个CBR和残差结构构成 | 141.24 | 398.60 | 84.82 | 82.17 | 81.85 | 85.13 | ||||
BaseU | 基本块由一个CBR构成 | 8.21 | 43.68 | 82.54 | 84.17 | 81.44 | 84.86 | ||||
BaseRes | 基本块基础上添加残差连接 | 15.00 | 72.71 | 34.27 | 78.26 | 32.79 | 44.65 | ||||
BaseCR | 基本块基础上添加通道残差结构 | 8.45 | 50.30 | 84.91 | 84.17 | 83.04 | 85.93 |
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU |
---|---|---|---|---|---|---|---|---|---|---|---|
BaseCRSU_RSU4F | SIPU | CRSU6 | CRSU5 | CRSU4 | RSU4F | 42.03 | 101.55 | 85.24 | 83.91 | 83.24 | 85.99 |
BaseCRU_RSU4F | SIPU | CRU6 | CRU5 | CRU4 | RSU4F | 42.03 | 101.55 | 84.28 | 84.62 | 83.11 | 85.87 |
BaseCRSU_CRSU4F | SIPU | CRSU6 | CRSU5 | CRSU4 | CRSU4F | 39.40 | 101.38 | 84.35 | 84.71 | 83.24 | 85.97 |
Table 5 Channel residual with nested U structure
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU |
---|---|---|---|---|---|---|---|---|---|---|---|
BaseCRSU_RSU4F | SIPU | CRSU6 | CRSU5 | CRSU4 | RSU4F | 42.03 | 101.55 | 85.24 | 83.91 | 83.24 | 85.99 |
BaseCRU_RSU4F | SIPU | CRU6 | CRU5 | CRU4 | RSU4F | 42.03 | 101.55 | 84.28 | 84.62 | 83.11 | 85.87 |
BaseCRSU_CRSU4F | SIPU | CRSU6 | CRSU5 | CRSU4 | CRSU4F | 39.40 | 101.38 | 84.35 | 84.71 | 83.24 | 85.97 |
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base4F | - | - | - | - | CRSU4F | 39.40 | 101.38 | 84.35 | 84.71 | 83.24 | 85.97 | |
BaseCEU | - | - | - | - | CEU | 39.82 | 101.40 | 84.37 | 84.73 | 83.27 | 85.99 | |
Base4F_CA | - | - | - | - | CRSU4F | CA | 39.40 | 101.38 | 84.49 | 84.77 | 83.31 | 86.02 |
Base4F_ResCBAM | - | - | - | - | CRSU4F | ResCBAM | 42.95 | 101.60 | 85.14 | 84.31 | 83.42 | 86.12 |
Base4F_CBAM[ | SIPU | CRSU6 | CRSU5 | CRSU4 | CRSU4F | CBAM | 39.41 | 101.38 | 84.21 | 84.31 | 82.92 | 85.76 |
Base4F_SE[ | - | - | - | - | CRSU4F | SE | 39.40 | 101.38 | 83.55 | 84.29 | 82.52 | 85.47 |
Base4F_SK[ | - | - | - | - | CRSU4F | SK | 40.49 | 101.44 | 83.37 | 84.87 | 82.73 | 85.62 |
Base4F_ResNeSt[ | - | - | - | - | CRSU4F | ResNeSt | 39.40 | 101.38 | 85.23 | 84.17 | 83.41 | 86.11 |
CR U2Net | - | - | - | - | CRSU4F | CEU | 44.70 | 101.72 | 84.15 | 86.03 | 83.83 | 86.40 |
Table 6 Verification of channel extruded U structure
方法 | En1/De1 | En2/De2 | En3/De3 | En4/De4 | 瓶颈层 | Params | FLOPs | PRE | SEN | DSC | mIoU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Base4F | - | - | - | - | CRSU4F | 39.40 | 101.38 | 84.35 | 84.71 | 83.24 | 85.97 | |
BaseCEU | - | - | - | - | CEU | 39.82 | 101.40 | 84.37 | 84.73 | 83.27 | 85.99 | |
Base4F_CA | - | - | - | - | CRSU4F | CA | 39.40 | 101.38 | 84.49 | 84.77 | 83.31 | 86.02 |
Base4F_ResCBAM | - | - | - | - | CRSU4F | ResCBAM | 42.95 | 101.60 | 85.14 | 84.31 | 83.42 | 86.12 |
Base4F_CBAM[ | SIPU | CRSU6 | CRSU5 | CRSU4 | CRSU4F | CBAM | 39.41 | 101.38 | 84.21 | 84.31 | 82.92 | 85.76 |
Base4F_SE[ | - | - | - | - | CRSU4F | SE | 39.40 | 101.38 | 83.55 | 84.29 | 82.52 | 85.47 |
Base4F_SK[ | - | - | - | - | CRSU4F | SK | 40.49 | 101.44 | 83.37 | 84.87 | 82.73 | 85.62 |
Base4F_ResNeSt[ | - | - | - | - | CRSU4F | ResNeSt | 39.40 | 101.38 | 85.23 | 84.17 | 83.41 | 86.11 |
CR U2Net | - | - | - | - | CRSU4F | CEU | 44.70 | 101.72 | 84.15 | 86.03 | 83.83 | 86.40 |
[1] |
YU H, LI J Q, ZHANG L X, et al. Design of lung nodules segmentation and recognition algorithm based on deep learning[J]. BMC Bioinformatics, 2021, 22(5): 1-21.
DOI |
[2] |
KIDO S, KIDERA S, HIRANO Y, et al. Segmentation of lung nodules on CT images using a nested three-dimensional fully connected convolutional network[J]. Frontiers in Artificial Intelligence, 2022, 5: 782225.
DOI URL |
[3] | AGNES S A, ANITHA J. Efficient multiscale fully convolutional UNet model for segmentation of 3D lung nodule from CT image[J]. Journal of Medical Imaging: Bellingham, Wash, 2022, 9(5): 052402. |
[4] |
WANG Z R, MEN J R, ZHANG F C. Improved V-Net lung nodule segmentation method based on selective kernel[J]. Signal, Image and Video Processing, 2023, 17(5): 1763-1774.
DOI |
[5] |
ZHOU Z X, GOU F F, TAN Y L, et al. A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5619-5630.
DOI URL |
[6] |
WANG Y F, ZHOU C, CHAN H P, et al. Hybrid U-Net-based deep learning model for volume segmentation of lung nodules in CT images[J]. Medical Physics, 2022, 49(11): 7287-7302.
DOI URL |
[7] |
SONG J D, HUANG S C, KELLY B, et al. Automatic lung nodule segmentation and intra-nodular heterogeneity image generation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(6): 2570-2581.
DOI URL |
[8] |
TYAGI S, TALBAR S N. CSE-GAN: a 3D conditional generative adversarial network with concurrent squeeze-and- excitation blocks for lung nodule segmentation[J]. Computers in Biology and Medicine, 2022, 147: 105781.
DOI URL |
[9] | 许正玺, 张少敏, 支力佳, 等. 三维多尺度嵌套U结构CT影像肺结节检测[J]. 中国图象图形学报, 2022, 27(3): 797-811. |
XU Z X, ZHANG S M, ZHI L J, et al. Detection of pulmonary nodules in three-dimensional multiscale nested U-structure computed tomography images[J]. Journal of Image and Graphics, 2022, 27(3): 797-811. (in Chinese) | |
[10] |
QIN X B, ZHANG Z C, HUANG C Y, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
DOI URL |
[11] |
CHEN Q, XIE W, ZHOU P, et al. Multi-crop convolutional neural networks for fast lung nodule segmentation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(5): 1190-1200.
DOI URL |
[12] | XU W X, XING Y, LU Y T, et al. Dual encoding fusion for atypical lung nodule segmentation[C]// 2022 IEEE 19th International Symposium on Biomedical Imaging. New York: IEEE Press, 2022: 1-5. |
[13] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 770-778. |
[14] | MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]// Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 122-138. |
[15] |
ARMATO S G I, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931.
PMID |
[16] |
SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13.
DOI PMID |
[17] |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
DOI URL |
[18] | MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 Fourth International Conference on 3D Vision. New York: IEEE Press, 2016: 565-571. |
[19] | 肖毅, 谢珺, 谢刚, 等. 融合注意力特征的多任务肺结节检测和分割[J]. 计算机工程与设计, 2022, 43(9)2525-2532. |
XIAO Y, XIE J, XIE G, et al. Multi-task lung nodule detection and segmentation fused with attention features[J]. Computer Engineering and Design, 2022, 43(9)2525-2532. (in Chinese) | |
[20] | 钟思华, 王梦璐, 郭兴明, 等. 基于改进VNet的肺结节分割方法研究[J]. 仪器仪表学报, 2020, 41(9): 206-215. |
ZHONG S H, WANG M L, GUO X M, et al. Study on the improved VNet network based pulmonary nodule segmentation method[J]. Chinese Journal of Scientific Instrument. 2020, 41(9): 206-215. (in Chinese) | |
[21] | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: learning dense volumetric segmentation from sparse annotation[M]// Medical Image Computing and Computer- Assisted Intervention - MICCAI 2016. Cham: Springer International Publishing, 2016: 424-432. |
[22] | MEHTA S, MERCAN E, BARTLETT J, et al. Y-net: joint segmentation and classification for diagnosis of breast biopsy images[M]// Medical Image Computing and Computer Assisted Intervention - MICCAI 2018. Cham: Springer International Publishing, 2018: 893-901. |
[23] | ZHENG H, QIN Y L, GU Y, et al. Refined local-imbalance-based weight for airway segmentation in CT[M]// Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Cham: Springer International Publishing, 2021: 410-419. |
[24] | TURELLA F, BREDELL G, OKUPNIK A, et al. High-resolution segmentation of lumbar vertebrae from conventional thick slice MRI[M]// Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Cham: Springer International Publishing, 2021: 689-698. |
[25] | LIANG D, LIU J, WANG K Q, et al. Position-prior clustering-based self-attention module for knee cartilage segmentation[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 193-202. |
[26] | WANG W X, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer[M]// Medical Image Computing and Computer Assisted Intervention - MICCAI 2021. Cham: Springer International Publishing, 2021: 109-119. |
[27] | HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: transformers for 3D medical image segmentation[C]// 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. New York: IEEE Press, 2022: 1748-1758. |
[28] | HUANG J J, LI H F, LI G B, et al. Attentive symmetric autoencoder for brain MRI segmentation[M]// Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2022: 203-213. |
[29] |
SAVIC M, MA Y H, RAMPONI G, et al. Lung nodule segmentation with a region-based fast marching method[J]. Sensors, 2021, 21(5): 1908.
DOI URL |
[30] | FU X L, ZHENG J Y, MAI J Y, et al. A coarse-to-fine morphological approach with knowledge-based rules and self-adapting correction for lung nodules segmentation[C]// 2022 IEEE International Conference on Image Processing. New York: IEEE Press, 2022: 1696-1700. |
[31] | LEE K, ZUNG J, LI P, et al. Superhuman accuracy on the SNEMI3D connectomics challenge[EB/OL]. [2023-08-8]. http://arxiv.org/abs/1706.00120. |
[32] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[33] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
DOI PMID |
[34] | LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 510-519. |
[35] | ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2022: 2735-2745. |
[1] |
FAN Teng, YANG Hao, YIN Wen, ZHOU Dong-ming.
Multi-scale view synthesis based on neural radiance field
[J]. Journal of Graphics, 2023, 44(6): 1140-1148.
|
[2] | CHANG Dong-liang , YIN Jun-hui , XIE Ji-yang , SUN Wei-ya , MA Zhan-yu. Attention-guided Dropout for image classification [J]. Journal of Graphics, 2021, 42(1): 32-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||