Journal of Graphics ›› 2024, Vol. 45 ›› Issue (2): 241-249.DOI: 10.11996/JG.j.2095-302X.2024020241
• Digital Design and Manufacture Special • Previous Articles Next Articles
HUANG Wenkai1(), LIANG Zhihong1, WANG Minghua1, ZHANG Wenfeng2, WANG Yishou1(
)
Received:
2024-01-05
Revised:
2024-01-27
Online:
2024-04-30
Published:
2024-04-29
Contact:
WANG Yishou (1978-), professor, Ph.D. His main research interests cover structural health monitoring, engine health management, advanced sensing technology, information fusion and machine learning. E-mail:wangys@xmu.edu.cn
About author:
HUANG Wenkai (1996-), master student. His main research interests cover structure health monitoring and digital twin. E-mail:35120211151564@stu.xmu.edu.cn
Supported by:
CLC Number:
HUANG Wenkai, LIANG Zhihong, WANG Minghua, ZHANG Wenfeng, WANG Yishou. Application and prospect of digital twin in the design, manufacturing, and operation of aerospace structures[J]. Journal of Graphics, 2024, 45(2): 241-249.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2024020241
Fig. 3 Applications of digital twin in the aerospace structures field ((a) Architecture for health monitoring system for the commodore barry bridge; (b) Using the DFPA architecture to measure the trajectory and velocity of the bullet; (c) Schematic drawing of the non-contact high-temperature deformation measuring system by combining infrared heating and digital image correlation technique; (d) Arrays of fiber grating sensors may be embedded into composites and strain gradients used to localize and assess damage via “strain imaging”; (e) Photograph of the active thermography and the three-dimensional (3D) structural optical imaging experimental setups)
[1] |
CAI Y, STARLY B, COHEN P, et al. Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing[J]. Procedia Manufacturing, 2017, 10: 1031-1042.
DOI URL |
[2] | SCHROEDER G N, STEINMETZ C, PEREIRA C E, et al. Digital twin data modeling with AutomationML and a communication methodology for data exchange[J]. IFAC- PapersOnLine, 2016, 49(30): 12-17. |
[3] | GROMOVA E. An example of a digital product design in Russian industry[EB/OL]. [2023-07-03]. http://www.xueshufan.com/publication/2956155726. |
[4] | PERNO M, HVAM L. Developing a framework for scoping digital twins in the process manufacturing industry[EB/OL]. [2023-07-03]. http://www.xueshufan.com/publication/3112101679. |
[5] |
DING K, CHAN F T S, ZHANG X D, et al. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors[J]. International Journal of Production Research, 2019, 57(20): 6315-6334.
DOI URL |
[6] | CABRERA F O. ESA digital twin earth precursor: food systems[EB/OL]. [2023-07-03]. http://www.researchgate.net/publication/351057241_ESA_Digital_Twin_Earth_Precursor_Food_Systems. |
[7] | GIL J. City information modelling: a conceptual framework for research and practice in digital urban planning[EB/OL]. [2023-07-03]. https://www.nstl.gov.cn/paper_detail.html?id=ad38ac1f810146f9b4d69bdf59c91739. |
[8] | GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[EB/OL]. [2023-07-03]. http://link.springer.com/chapter/10.1007%2F978-3-319-38756-7_4. |
[9] |
KNAPP G L, MUKHERJEE T, ZUBACK J S, et al. Building blocks for a digital twin of additive manufacturing[J]. Acta Materialia, 2017, 135: 390-399.
DOI URL |
[10] | ZHANG S, WANG S, ZHAO L. The life cycle state evaluation of electrical equipment based on digital twins[EB/OL]. [2023-07-03]. https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting_thesis/0205116527649.html. |
[11] | BARANWAL A, PILLAI S, NGUYEN T, et al. A deep learning mask analysis toolset using SEM digital twins[EB/OL]. [2023-07-03]. https://www.zhangqiaokeyan.com/academic-conference-foreign_meeting_thesis/0205114446445.html. |
[12] | LI Y, YANG S, GU X, et al. Digital twin technology improves the visualization of telescope drive system[EB/OL]. [2023-07-03]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12187/121871U/Digital-twin-technology-improves-the-visualization-of-telescope-drive-system/10.1117/12.2637180.full. |
[13] | RAO V S, SANA S. Overview of control design methods for smart structural system[EB/OL]. [2023-07-03]. http://www.researchgate.net/publication/252976379_Overview_of_control_design_methods_for_smart_structural_system. |
[14] | PINES D, AKTAN A E. Status of structural health monitoring of long-span bridges in the united states[EB/OL]. [2023-07-03]. http://onlinelibrary.wiley.com/doi/10.1002/pse.129/abstract. |
[15] |
TYRRELL B, ANDERSON K, BAKER J, et al. Time delay integration and In-pixel spatiotemporal filtering using a nanoscale digital CMOS focal plane readout[J]. IEEE Transactions on Electron Devices, 2009, 56(11): 2516-2523.
DOI URL |
[16] |
PAN B, WU D F, XIA Y. High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation[J]. Optics and Lasers in Engineering, 2010, 48(9): 841-848.
DOI URL |
[17] | UDD E. 25 Years of structural monitoring using fiber optic sensors[EB/OL]. [2023-07-03]. http://www.researchgate.net/publication/253123489_25_Years_of_Structural_Monitoring_Using_Fiber_Optic_Sensors. |
[18] | MENG X L, WANG Y H, LIU J Y, et al. Nondestructive inspection of curved clad composites with subsurface defects by combination active thermography and three-dimensional structural optical imaging[J]. Infrared Physics & Technology, 2019, 97: 424-431. |
[19] | TIKHONOV A I, SAZONOV A A. Development and introduction of digital double technology technology in aviation technology[J]. Management and Business Administration, 2020(1): 14-20. |
[20] | LIU M Z, GUO L. Optimal design, analysis and additive manufacturing for two-level stochastic honeycomb structure[EB/OL]. [2023-07-03]. https://www.zhangqiaokeyan.com/journal-foreign-detail/0704028223728.html. |
[21] |
HENNING F, KÄRGER L, DÖRR D, et al. Fast processing and continuous simulation of automotive structural composite components[J]. Composites Science and Technology, 2019, 171: 261-279.
DOI URL |
[22] | 张在房, 周亮. 基于数字孪生的火箭框环拉弯回弹预测[J]. 航空制造技术, 2022, 65(19): 66-73. |
ZHANG Z F, ZHOU L. Springback prediction of rocket frame ring based on digital twin[J]. Aeronautical Manufacturing Technology, 2022, 65(19): 66-73 (in Chinese). | |
[23] | HAMSHAW S D, ENGEL T, RIZZO D M, et al. Application of unmanned aircraft system for monitoring bank erosion along river corridors[EB/OL]. [2023-07-04]. http://www.xueshufan.com/publication/2945648342. |
[24] |
JADHAV P. Innovative designs of embedded foam inserts in aerospace composite structures[J]. Materials Today: Proceedings, 2020, 21: 1164-1168.
DOI URL |
[25] | 吴浩, 杨帆, 王斌, 等. 基于数字孪生的火箭结构设计制造与验证技术研究[J]. 宇航总体技术, 2021, 5(2): 7-13. |
WU H, YANG F, WANG B, et al. Study of digital twin based launch vehicle structural design manufacture and validation technology[J]. Astronautical Systems Engineering Technology, 2021, 5(2): 7-13 (in Chinese). | |
[26] | RIANTO P, HERAWAN A, KURNIAWAN R, et al. Development of remote sensing satellite attitude visualization simulator: mechanical design[EB/OL]. [2023-07-04]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11372/113721Y/Development-of-remote-sensing-satellite-attitude-visualization-simulator--mechanical/10.1117/12.2542655.full. |
[27] | 戴璐, 邵一夫, 郭宇元, 等. 基于数字孪生的卫星装备智能设计系统[J]. 兵工学报, 2022, 43(S2): 139-145. |
DAI L, SHAO Y F, GUO Y Y, et al. Intelligent design system of satellite equipment based on digital twins[J]. Acta Armamentarii, 2022, 43(S2): 139-145 (in Chinese).
DOI |
|
[28] | SOUTIS C. Aerospace engineering requirements in building with composites[EB/OL]. [2023-07-03]. https://www.sciencedirect.com/science/article/pii/B9780081026793000010. |
[29] | KOVTUN A, TABUNENKO V. Determination of reliability indicators of complex elements of rocket complexes in transportation of rockets[J]. Advanced Information Systems, 2019, 3(1): 76-80. |
[30] | ASRAFF A K, SHEELA S, JACOB R, et al. Modelling of low cycle fatigue failure through damage mechanics[EB/OL]. [2023-07-04]. http://link.springer.com/10.1007/978-981-13-8767-8_6. |
[31] | HWANG K Y, PARK J K. Characteristics and development trends of heat-resistant composites for flight propulsion system[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2019, 47(9): 629-641. |
[32] | TROFIMOV I, BOICHENKO S, SHAMANSKYI S. Analysis of rocket fuels and problems of their application on the example of Ukraine[EB/OL]. [2023-07-04]. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3763002. |
[33] | CARMI R, WISNER B, VANNIAMPARAMBIL P A, et al. Progressive failure monitoring of fiber-reinforced metal laminate composites using a nondestructive approach[J]. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2019, 2(2): 021006. |
[34] |
PERESZLAI C, GEIER N. Comparative analysis of wobble milling, helical milling and conventional drilling of CFRPs[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 3913-3930.
DOI |
[35] | RITTO T G, ROCHINHA F A. Digital twin, physics-based model, and machine learning applied to damage detection in structures[EB/OL]. [2023-07-04]. https://www.nstl.gov.cn/paper_detail.html?id=9d5843e79c60b13e8ea260a698b2aa84. |
[36] |
BERGMAYR T, WINKLBERGER M, KRALOVEC C, et al. Structural health monitoring of aerospace sandwich structures via strain measurements along zero-strain trajectories[J]. Engineering Failure Analysis, 2021, 126: 105454.
DOI URL |
[37] | PAAL S G, VICK S, KOPSIDA M. Use cases for architects and engineers[EB/OL]. [2023-07-03]. https://www.sciencedirect.com/science/article/pii/B978012815503500005X. |
[38] | KHABAROV S S, KOMSHIN A S. Fiber-optic measurement technology and the phase-chronometric method for controlling and monitoring the technical condition of aircraft structures[EB/OL]. [2023-07-04]. http://link.springer.com/article/10.1007/s11018-021-01907-3. |
[39] | HAN B, NIU W, GAO B. Research on application of data driven PHM technology in complex system[EB/OL]. [2023-07-04]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12257/122570G/Research-on-application-of-data-driven-PHM-technology-in-complex/10.1117/12.2640221.full. |
[40] | ASHTIANI M Z, MUENCH S T, SHEAN D E. Remote sensing application in surveying statewide asphalt pavement aggregate stockpile inventory[EB/OL]. [2023-07-04]. http://www.researchgate.net/publication/346028002_Remote_Sensing_Application_in_Surveying_Statewide_Asphalt_Pavement_Aggregate_Stockpile_Inventory. |
[41] | 刘婷, 张建超, 刘魁. 基于数字孪生的航空发动机全生命周期管理[J]. 航空动力, 2018(1): 52-56. |
LIU T, ZHANG J C, LIU K. Aero engine life cycle management based on digital twin[J]. Aerospace Power, 2018(1): 52-56 (in Chinese). | |
[42] | 戚浩, 李晓月. 数字孪生驱动的机械工艺系统研究进展[EB/OL]. (2023-09-07) [2023-12-01]. https://kns.cnki.net/kcms2/article/abstract?v=w1Je9LIFm5AIDPpqmzi7yCPtr_vZpCXPXhuywDmmKxd4PIH-EIy1i658Xx9lkO08W9IKZnHJKEjYbJZI5QKwpjCRoG5-c48EJLUbSIGT1j3_AF3i7ytaT5oVfKy_14hMAHZpS6tqgoY=&uniplatform=NZKPT&language=CHS. |
QI H, LI X. Research progress in mechanical process systems driven by digital twin[EB/OL]. (2023-09-07) [2023-12-01]. https://kns.cnki.net/kcms2/article/abstract?v=w1Je9LIFm5AIDPpqmzi7yCPtr_vZpCXPXhuywDmmKxd4PIH-EIy1i658Xx9lkO08W9IKZnHJKEjYbJZI5QKwpjCRoG5-c48EJLUbSIGT1j3_AF3i7ytaT5oVfKy_14hMAHZpS6tqgoY=&uniplatform=NZKPT&language=CHS (in Chinese). | |
[43] | 孙学民. 数字孪生驱动的高精密产品装调理论研究与应用[D]. 上海: 东华大学, 2022: 1-136. |
SUN X M. Theoretiacl research and application of high-precision products assembly-commissioning driven by digital twin[D]. Shanghai: Donghua University, 2022: 1-136 (in Chinese). | |
[44] | 周涵婷, 夏敏. 可信数字孪生及其在智能制造的应用: 机遇和挑战[J]. 厦门大学学报(自然科学版), 2022, 61(6): 992-1009. |
ZHOU H T, XIA M. Trustworthy digital twins and its application in smart manufacturing: opportunities and challenges[J]. Journal of Xiamen University (Natural Science), 2022, 61(6): 992-1009 (in Chinese). | |
[45] | 刘芳, 刘琪, 黄美晨, 等. 数字孪生:跨界赋能于多领域智能的新应用[J]. 计算机系统应用, 2023, 32(8): 31-41. |
LIU f, LIU Q, HUANG M C, et al. Digital twin: new application of transboundary empowerment to industrial intelligence[J]. Computer Systems & Applications, 2023, 32(8): 31-41 (in Chinese). | |
[46] | 王博, 郝鹏, 田阔, 等. 航空航天结构轻量化设计与实验方法研究进展[J]. 宇航学报, 2023, 44(4): 596-606. |
WANG B, HAO P, TIAN K, et al. Advances in lightweight design and experimental methods for aerospace structures[J] Journal of Astronautics, 2023, 44(4): 596-606 (in Chinese). | |
[47] | 朱迪, 张博闻, 程雅琪, 等. 知识赋能的新一代信息系统研究现状、发展与挑战[J]. 软件学报, 2023, 34(10): 4439-4462. |
ZHU D, ZHANG B W, CHENG Y Q, et al. Survey on knowledge enabled new generation information systems[J]. Journal of Software, 2023, 34(10): 4439-4462 (in Chinese). |
[1] | PANG Bo, YANG Hui, YU Rongrong, ZHANG Haoyue, LUO Qiang. Research on spacecraft mechanisms production line balance based on digital twin technology [J]. Journal of Graphics, 2024, 45(2): 332-338. |
[2] | TANG Peng, SA Guo-dong, LIU Zhen-yu, TAN Jian-rong. Design of digital twin system for forging hydraulic press [J]. Journal of Graphics, 2023, 44(3): 609-615. |
[3] | TIAN Ling, LIU Guo, LIU Si-chao . Digital twin and production line simulation technology [J]. Journal of Graphics, 2021, 42(3): 349-358. |
[4] | Ma Zhigang, Liu Wenyi. Study of Massive Data Curve Plotting Method in Aerospace Test System [J]. Journal of Graphics, 2014, 35(4): 623-629. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||