[1] |
HAN B, YAO Q M, YU X R, et al. Co-teaching: robust training of deep neural networks with extremely noisy labels[C]// The 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 8536-8546.
|
[2] |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 248-255.
|
[3] |
ZHU X Q, WU X D. Class noise vs. attribute noise: a quantitative study[J]. Artificial Intelligence Review, 2004, 22(3): 177-210.
|
[4] |
KIM Y, YIM J, YUN J, et al. NLNL: negative learning for noisy labels[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 101-110.
|
[5] |
TONEVA M, SORDONI A, DES COMBES R T, et al. An empirical study of example forgetting during deep neural network learning[EB/OL]. (2019-11-15) [2023-03-20]. https://arxiv.org/abs/1812.05159.pdf.
|
[6] |
HUANG J C, QU L, JIA R F, et al. O2U-net: a simple noisy label detection approach for deep neural networks[C]// 2019 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2019: 3326-3334.
|
[7] |
REBBAPRAGADA U D. Strategic targeting of outliers for expert review[EB/OL]. (2010-06-01) [2023-03-20]. blob: https://www.proquest.com/c4d84676-07c3-4eb0-84a0-89e32ab6bcbe.
|
[8] |
EKAMBARAM R, FEFILATYEV S, SHREVE M, et al. Active cleaning of label noise[J]. Pattern Recognition, 2016, 51: 463-480.
|
[9] |
BERNHARDT M, CASTRO D C, TANNO R, et al. Active label cleaning for improved dataset quality under resource constraints[J]. Nature Communications, 2022, 13(1): 1161.
DOI
PMID
|
[10] |
JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning[EB/OL]. (2021-02-07) [2023-03-20]. http://arxiv.org/abs/2011.00362.pdf.
|
[11] |
SENER O, SAVARESE S. Active learning for convolutional neural networks: a core-set approach[EB/OL]. (2018-06-01) [2023-03-20]. http://arxiv.org/abs/1708.00489.pdf.
|
[12] |
HOULSBY N, HUSZÁR F, GHAHRAMANI Z, et al. Bayesian active learning for classification and preference learning[EB/OL]. (2011-12-24) [2023-03-20]. http://arxiv.org/abs/1112.5745.pdf.
|
[13] |
GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]// The 33rd International Conference on International Conference on Machine Learning - Volume 48. New York:ACM, 2016: 1050-1059.
|
[14] |
KIRSCH A, VAN AMERSFOORT J, GAL Y. BatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning[EB/OL]. (2019-10-28) [2023-03-20]. http://arxiv.org/abs/1906.08158.pdf.
|
[15] |
BORSOS Z, MUTNÝ M, KRAUSE A. Coresets via bilevel optimization for continual learning and streaming[EB/OL]. (2020-10-22) [2023-03-20]. http://arxiv.org/abs/2006.03875.pdf.
|
[16] |
PINSLER R, GORDON J, NALISNICK E, et al. Bayesian batch active learning as sparse subset approximation[EB/OL]. (2021-02-08) [2023-03-20]. http://arxiv.org/abs/1908.02144.pdf.
|
[17] |
DOERSCH C, GUPTA A, EFROS A A. Unsupervised visual representation learning by context prediction[C]// 2015 IEEE International Conference on Computer Vision. New York: IEEE Press, 2015: 1422-1430.
|
[18] |
ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]// European Conference on Computer Vision. Cham: Springer, 2016: 649-666.
|
[19] |
PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 2536-2544.
|
[20] |
GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[EB/OL]. (2018-03-21) [2023-03-20]. http://arxiv.org/abs/1803.07728.pdf.
|
[21] |
ALGAN G, ULUSOY I. Image classification with deep learning in the presence of noisy labels: a survey[J]. Knowledge-Based Systems, 2021, 215: 106771.
|
[22] |
MANWANI N, SASTRY P S. Noise tolerance under risk minimization[J]. IEEE Transactions on Cybernetics, 2013, 43(3): 1146-1151.
DOI
PMID
|
[23] |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[EB/OL]. (2009-04-08) [2023-03-20]. https://www.cs.toronto.edu/-kriz/learning-features-2009-TR.pdf.
|