Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 1028-1041.DOI: 10.11996/JG.j.2095-302X.2025051028
• Computer Graphics and Virtual Reality • Previous Articles Next Articles
CHEN Zhizhang(), FENG Yingchaojie, WENG Luoxuan, SHEN Jian, CHEN Wei(
)
Received:
2024-11-19
Accepted:
2025-02-25
Online:
2025-10-30
Published:
2025-09-10
Contact:
CHEN Wei
About author:
First author contact:CHEN Zhizhang (2000-), master student. His main research interest covers visual analysis. E-mail:chenzhiz@zju.edu.cn
Supported by:
CLC Number:
CHEN Zhizhang, FENG Yingchaojie, WENG Luoxuan, SHEN Jian, CHEN Wei. DRec: large language model-driven data analysis recommendation system[J]. Journal of Graphics, 2025, 46(5): 1028-1041.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025051028
序号 | 调研问题 |
---|---|
Q1 | 系统能够便捷地进行数据分析 |
Q2 | 系统帮助我找到数据探索方向 |
Q3 | 系统帮助我回顾历史对话和结果 |
Q4 | 系统的分析流程易于理解和学习 |
Q5 | 我愿意在未来的数据分析场景中使用该系统 |
Table 1 Evaluation by comparison with the baseline system
序号 | 调研问题 |
---|---|
Q1 | 系统能够便捷地进行数据分析 |
Q2 | 系统帮助我找到数据探索方向 |
Q3 | 系统帮助我回顾历史对话和结果 |
Q4 | 系统的分析流程易于理解和学习 |
Q5 | 我愿意在未来的数据分析场景中使用该系统 |
序号 | 调研问题 |
---|---|
Q1 | 系统找到了合理的数据洞察 |
Q2 | 系统提供的数据列信息帮助加深对数据的认识 |
Q3 | 系统提供的关联洞察帮助更全面的分析数据 |
Q4 | 系统的关注度信息促进数据探索 |
Q5 | 系统给出了合理的数据分析推荐 |
Q6 | 系统帮助我快速适应LLM驱动的数据分析 |
Q7 | 系统帮呼我决定对数据的下一步探索 |
Q8 | 我对选择了正确的数据探索方向感到自信 |
Q9 | 系统易于学习 |
Table 2 Evaluation of system auxiliary features
序号 | 调研问题 |
---|---|
Q1 | 系统找到了合理的数据洞察 |
Q2 | 系统提供的数据列信息帮助加深对数据的认识 |
Q3 | 系统提供的关联洞察帮助更全面的分析数据 |
Q4 | 系统的关注度信息促进数据探索 |
Q5 | 系统给出了合理的数据分析推荐 |
Q6 | 系统帮助我快速适应LLM驱动的数据分析 |
Q7 | 系统帮呼我决定对数据的下一步探索 |
Q8 | 我对选择了正确的数据探索方向感到自信 |
Q9 | 系统易于学习 |
[1] | WONGSUPHASAWAT K, MORITZ D, ANAND A, et al. Voyager: exploratory analysis via faceted browsing of visualization recommendations[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(1): 649-658. |
[2] | LUO Y Y, QIN X D, TANG N, et al. DeepEye: towards automatic data visualization[C]// The 34th IEEE International Conference on Data Engineering. New York: IEEE Press, 2018: 101-112. |
[3] | PANDEY A, SRINIVASAN A, SETLUR V. MEDLEY: intent-based recommendations to support dashboard composition[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(1): 1135-1145. |
[4] | YU Y, SHEN L, LONG F, et al. PyGWalker: on-the-fly assistant for exploratory visual data analysis[C]// 2024 IEEE Visualization and Visual Analytics. New York: IEEE Press, 2024: 6-10. |
[5] | SHEN L X, SHEN E Y, LUO Y Y, et al. Towards natural language interfaces for data visualization: a survey[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(6): 3121-3144. |
[6] | SETLUR V, BATTERSBY S E, TORY M, et al. Eviza: a natural language interface for visual analysis[C]// The 29th ACM Symposium on User Interface Software and Technology. New York: ACM, 2016: 365-377. |
[7] | HOQUE E, SETLUR V, TORY M, et al. Applying pragmatics principles for interaction with visual analytics[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 309-318. |
[8] | GAO T, DONTCHEVA M, ADAR E, et al. DataTone: managing ambiguity in natural language interfaces for data visualization[C]// The 28th ACM Symposium on User Interface Software and Technology. New York: ACM, 2015: 489-500. |
[9] | NARECHANIA A, SRINIVASAN A, STASKO J. NL4DV: a toolkit for generating analytic specifications for data visualization from natural language queries[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 369-379. |
[10] | TORY M, SETLUR V. Do what I mean, not what I say! Design considerations for supporting intent and context in analytical conversation[C]// 2019 IEEE Conference on Visual Analytics Science and Technology. New York: IEEE Press, 2019: 93-103. |
[11] | OpenAI, ACHIAM J, ADLER S, et al. GPT-4 technical report[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2303.08774. |
[12] | OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]// The 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 2011. |
[13] | TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2302.13971. |
[14] | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// The 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 159. |
[15] | WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of- thought prompting elicits reasoning in large language models[C]// The 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 1800. |
[16] | YAO S Y, YU D, ZHAO J, et al. Tree of thoughts: deliberate problem solving with large language models[C]// The 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 517. |
[17] | XIE T B, ZHOU F, CHENG Z J, et al. OpenAgents: an open platform for language agents in the wild[EB/OL]. [2024- 09-19]. https://arxiv.org/abs/2310.10634. |
[18] | CROTHERS E N, JAPKOWICZ N, VIKTOR H L. Machine-generated text: a comprehensive survey of threat models and detection methods[J]. IEEE Access, 2023, 11: 70977-71002. |
[19] | WENG L X, LIU S, ZHU H, et al. Towards an understanding and explanation for mixed-initiative artificial scientific text detection[J]. Information Visualization, 2024, 23(3): 272-291. |
[20] | WENG L X, WANG X B, LU J Y, et al. InsightLens: discovering and exploring insights from conversational contexts in large-language-model-powered data analysis[EB/OL]. [2024-09-19]. https://arxiv.org/html/2404.01644v1. |
[21] | SRINIVASAN A, DONTCHEVA M, ADAR E, et al. Discovering natural language commands in multimodal interfaces[C]// The 24th International Conference on Intelligent User Interfaces. New York: ACM, 2019: 661-672. |
[22] | SRINIVASAN A, SETLUR V. Snowy: recommending utterances for conversational visual analysis[C]// The 34th Annual ACM Symposium on User Interface Software and Technology. New York: ACM, 2021: 864-880. |
[23] | WANG X B, CHENG F R, WANG Y, et al. Interactive data analysis with next-step natural language query recommendation[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2201.04868. |
[24] | SRINIVASAN A, STASKO J T. Natural language interfaces for data analysis with visualization: considering what has and could be asked[C]// The Eurographics/IEEE VGTC Conference on Visualization: Short Papers. Goslar: Eurographics Association, 2017: 55-59. |
[25] | YU B W, SILVA C T. FlowSense: a natural language interface for visual data exploration within a dataflow system[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(1): 1-11. |
[26] | KUMAR A, AURISANO J, DI EUGENIO B, et al. Intelligent assistant for exploring data visualizations[EB/OL]. [2024-09-19]. https://cdn.aaai.org/ocs/18496/18496-79437-1-PB.pdf. |
[27] | FU S W, XIONG K, GE X D, et al. Quda: natural language queries for visual data analytics[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2005.03257. |
[28] | LUO Y Y, TANG N, LI G L, et al. Natural language to visualization by neural machine translation[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 217-226. |
[29] | LIU C, HAN Y, JIANG R K, et al. ADVISor: automatic visualization answer for natural-language question on tabular data[C]// The 14th IEEE Pacific Visualization Symposium. New York: IEEE Press, 2021: 11-20. |
[30] | SAKTHEESWARAN A, SRINIVASAN A, STASKO J T. Touch? Speech? or Touch and Speech? Investigating multimodal interaction for visual network exploration and analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(6): 2168-2179. |
[31] | KAVAZ E, PUIG A, RODRÍGUEZ I, et al. Chatbot-Based natural language interfaces for data visualisation: a scoping review[J]. Applied Sciences, 2023, 13(12): 7025. |
[32] | FENG Y C J, WANG X B, PAN B, et al. XNLI: explaining and diagnosing NLI-based visual data analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(7): 3813-3827. |
[33] | GUO Y, CAO N, QI X Y, et al. Urania: visualizing data analysis pipelines for natural language-based data exploration[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2306.07760. |
[34] | KIM H, LE K D, LIM G, et al. DataDive: supporting readers’ contextualization of statistical statements with data exploration[C]// The 29th International Conference on Intelligent User Interfaces. New York: ACM, 2024: 623-639. |
[35] | CHU W, PARK S T. Personalized recommendation on dynamic content using predictive bilinear models[C]// The 18th International Conference on World Wide Web. New York: ACM, 2009: 691-700. |
[36] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// The 25th Conference on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2009: 452-461. |
[37] | WANG S J, CAO L B, WANG Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54(7): 154. |
[38] | BHATIA S, MAJUMDAR D, MITRA P. Query suggestions in the absence of query logs[C]// The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 795-804. |
[39] | HE Q, JIANG D X, LIAO Z, et al. Web query recommendation via sequential query prediction[C]// 2009 IEEE 25th International Conference on Data Engineering. New York: IEEE Press, 2009: 1443-1454. |
[40] | CHEN C, HOFFSWELL J, GUO S N, et al. WhatsNext: guidance-enriched exploratory data analysis with interactive, low-code notebooks[C]// 2023 IEEE Symposium on Visual Languages and Human-Centric Computing. New York: IEEE Press, 2023: 209-214. |
[41] | HUA W Y, LI L, XU S Y, et al. Tutorial on large language models for recommendation[C]// The 17th ACM Conference on Recommender Systems. New York: ACM, 2023: 1281-1283. |
[42] | HU J, XIA W W, ZHANG X L, et al. Enhancing sequential recommendation via LLM-based semantic embedding learning[C]// The ACM on Web Conference 2024. New York: ACM, 2024: 103-111. |
[43] | DING R, HAN S, XU Y, et al. Quick-insights: quick and automatic discovery of insights from multi-dimensional data[C]// 2019 International Conference on Management of Data. New York: ACM, 2019: 317-332. |
[44] | ZHOU Z L, WEN X M, WANG Y, et al. Modeling and leveraging analytic focus during exploratory visual analysis[C]// 2021 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2021: 21. |
[45] | EPPERSON W, GORANTLA V, MORITZ D, et al. Dead or alive: continuous data profiling for interactive data science[J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(1): 197-207. |
[46] | NARECHANIA A, COSCIA A, WALL E, et al. Lumos: increasing awareness of analytic behavior during visual data analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(1): 1009-1018. |
[1] | XU Jinglin, PENG Yang, OU Jinwu, TAN Junjie, SHU Jiangpeng, YU Fangqiang. An intelligent maintenance system for public buildings integrating digital twin and large language model [J]. Journal of Graphics, 2024, 45(6): 1200-1206. |
[2] | WU Jingyi, JING Jun, HE Yifan, ZHANG Shiyu, KANG Yunfeng, TANG Wei, KONG Delan, LIU Xiangdong. Traffic anomaly event analysis method for highway scenes based on multimodal large language models [J]. Journal of Graphics, 2024, 45(6): 1266-1276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||