Journal of Graphics ›› 2025, Vol. 46 ›› Issue (5): 1072-1084.DOI: 10.11996/JG.j.2095-302X.2025051072
• Digital Design and Manufacture • Previous Articles Next Articles
ZHAN Keyi1,2,3(), HUANG Weina1,2, CHUN Daoyong4, GUI Yongtao1,2, ZHANG Chunlin1,2
Received:
2024-11-01
Accepted:
2025-04-12
Online:
2025-10-30
Published:
2025-09-10
About author:
First author contact:ZHAN Keyi (1992-), PhD candidate. His main research interest covers aero engine health management. E-mail:aecc_gys_zky@yeah.net
Supported by:
CLC Number:
ZHAN Keyi, HUANG Weina, CHUN Daoyong, GUI Yongtao, ZHANG Chunlin. Analysis and research on the functional architecture of aero-engine health management system[J]. Journal of Graphics, 2025, 46(5): 1072-1084.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2025051072
类型 | OOSEM | Harmony-SE | MagicGrid |
---|---|---|---|
SysML兼容性 | 利用SysML的面向对象的概念进行设计,对标准的支持度很高 | 未完全兼容SysML的9类图,针对指标的计算支持度低 | 标准兼容性最高,将诸如行为图与参数图结合使用,动态表示系统的指标变化 |
建模灵活性 | 面向对象方法通常会引入一些复杂性,特别是对于小型项目或简单的系统工程任务可能会显得过于繁琐 | 需要较为严格按照流程建模,才能够满足模型的一致性检查或仿真要求;建模过程复杂 | 对SysML支持完整,可以在方法论制定和剪裁过程中提供好的基础和引导,对各方法论适用性较强 |
适用 领域 | 原始形式是集成系统和软件工程过程,后进一步完善和发展使其适用范围可以面向对象的软件开发、硬件开发和测试综合 | 主要被用于大型综合系统和软件开发流程,适用于软件开发和嵌入式软件开发 | 根据方法论的特性其对机械、电气、液压等物理建模的支持力度较大 |
工具 支持 | 无专用的OOSEM流程框架工具,可由OMG SysML工具及相关需求管理工具 | 由IBM提供对Harmony-SE方法支撑,不同阶段的建模过程在Rhapsody软件中都用相应的工具模块支持 | 用MagicDraw可完整支持方法论,其他工具只要支持SysML标准,也可进行方法论的适配 |
Table 1 Comparison of MBSE methodologies
类型 | OOSEM | Harmony-SE | MagicGrid |
---|---|---|---|
SysML兼容性 | 利用SysML的面向对象的概念进行设计,对标准的支持度很高 | 未完全兼容SysML的9类图,针对指标的计算支持度低 | 标准兼容性最高,将诸如行为图与参数图结合使用,动态表示系统的指标变化 |
建模灵活性 | 面向对象方法通常会引入一些复杂性,特别是对于小型项目或简单的系统工程任务可能会显得过于繁琐 | 需要较为严格按照流程建模,才能够满足模型的一致性检查或仿真要求;建模过程复杂 | 对SysML支持完整,可以在方法论制定和剪裁过程中提供好的基础和引导,对各方法论适用性较强 |
适用 领域 | 原始形式是集成系统和软件工程过程,后进一步完善和发展使其适用范围可以面向对象的软件开发、硬件开发和测试综合 | 主要被用于大型综合系统和软件开发流程,适用于软件开发和嵌入式软件开发 | 根据方法论的特性其对机械、电气、液压等物理建模的支持力度较大 |
工具 支持 | 无专用的OOSEM流程框架工具,可由OMG SysML工具及相关需求管理工具 | 由IBM提供对Harmony-SE方法支撑,不同阶段的建模过程在Rhapsody软件中都用相应的工具模块支持 | 用MagicDraw可完整支持方法论,其他工具只要支持SysML标准,也可进行方法论的适配 |
时间/h | 涡轮后温度/℃ | 控制系统 | 健康管理系统 |
---|---|---|---|
0 | 500 | 正常控制 | 记录初始温度,建立温度基线 |
100 | 520 | 正常控制 | 监控温度变化,分析趋势 |
200 | 550 | 调整燃油供给,降低温度 | 预测叶片寿命,发出预警 |
300 | 580 | 进一步调整策略 | 建议检修或部件更换 |
Table 2 Functional differences analysis between health management systems and control systems
时间/h | 涡轮后温度/℃ | 控制系统 | 健康管理系统 |
---|---|---|---|
0 | 500 | 正常控制 | 记录初始温度,建立温度基线 |
100 | 520 | 正常控制 | 监控温度变化,分析趋势 |
200 | 550 | 调整燃油供给,降低温度 | 预测叶片寿命,发出预警 |
300 | 580 | 进一步调整策略 | 建议检修或部件更换 |
[1] | VOLPONI A J. Gas turbine engine health management: past, present, and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 051201. |
[2] | 杨天策, 张瑞, 蔡景. 航空发动机机载健康管理系统设计方法[J]. 航空发动机, 2023, 49(6): 6-13. |
YANG T C, ZHANG R, CAI J. Design method of airborne health management system for aeroengine[J]. Aeroengine, 2023, 49(6): 6-13 (in Chinese). | |
[3] | 李少尘, 陈敏, 胡金涛, 等. 航空燃气涡轮发动机气路故障诊断进展[J]. 航空发动机, 2022, 48(2): 33-49. |
LI S C, CHEN M, HU J T, et al. A review of research progress on aircraft gas turbine engines gas path fault diagnosis[J]. Aeroengine, 2022, 48(2): 33-49 (in Chinese). | |
[4] | 孙瑞谦, 缑林峰, 韩小宝, 等. 考虑性能退化的航空发动机故障诊断量化评估[J]. 推进技术, 2022, 43(8): 210247. |
SUN R Q, GOU L F, HAN X B, et al. Quantitative evaluation of fault diagnosability for degraded aero-engine[J]. Journal of Propulsion Technology, 2022, 43(8): 210247 (in Chinese). | |
[5] | 尉询楷, 刘芳, 陈良峰, 等. 航空发动机健康管理用户的诊断预测指标体系[J]. 航空发动机, 2012, 38(5): 27-35. |
WEI X K, LIU F, CHEN L F, et al. Diagnostic and prognostic metrics of aeroengine health management users[J]. Aeroengine, 2012, 38(5): 27-35 (in Chinese). | |
[6] | 费成巍, 艾延廷. 航空发动机健康管理系统设计技术[J]. 航空发动机, 2009, 35(5): 24-29. |
FEI C W, AI Y T. Design technology of aircraft engine health management system[J]. Aeroengine, 2009, 35(5): 24-29 (in Chinese). | |
[7] |
曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和 FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573.
DOI |
CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management I: diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573 (in Chinese). | |
[8] |
林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.
DOI |
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese).
DOI |
|
[9] | SAE. SAE ARP 1587B-2007 Aircraft gas turbine engine monitoring system guide[S]. Warrendale: SAE International, 2007: 3-25. |
[10] | BONISSONE P P. Prognostics and health management[EB/OL]. [2024-04-21] http://www.ndia.dtic.mil/wpcontent/uploads/2006/logistics/bonissone.pdf. |
[11] | ROEMER M J, BYINGTON C S, KACPRZYNSKI G J, et al. An overview of selected prognostic technologies with application to engine health management[EB/OL]. [2024- 05-01]. https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2006/42371/707/314613. |
[12] | HESS A, CALVELLO G, DABNEY T. PHM a key enabler for the JSF autonomic logistics support concept[C]// 2004 IEEE Aerospace Conference. New York: IEEE Press, 2004: 3543-3550. |
[13] | BLASER R, NIGOGHOSIAN B. Integrated System Health Management (ISHM) and affordable logistics[EB/OL]. [2024-05-01]. https://doi.org/10.2514/6.2010-8698. |
[14] | GLASS B, JAMBOR B, CHUN W, et al. Integrated system health management architecture design[EB/OL]. [2024-04-21]. https://doi.org/10.2514/6.2010-3453. |
[15] | PARKER K I, GUO T H. Development of a turbofan engine simulation in a graphical simulation environment[R]. NASA, 2003: 2003-212543, Cleveland, Ohio. |
[16] | FREDERICK D K, DECASTRO J S, LITT J S. User’s guide for the commercial modular aero-propulsion system simulation (C-MAPSS)[R]. Cleveland: NASA, 2007. |
[17] | CONROY M, MAZZONE R, LIN W. NASA integrated model-centric architecture (NIMA) model use and reuse[C]// 2013 IEEE Aerospace Conference. New York: IEEE Press, 2013: 1-15. |
[18] | 张有山, 杨雷, 王平, 等. 基于模型的系统工程方法在载人航天任务中的应用探讨[J]. 航天器工程, 2014, 23(5): 121-128. |
ZHANG Y S, YANG L, WANG P, et al. Discussion on application of model-based systems engineering method to human spaceflight mission[J]. Spacecraft Engineering, 2014, 23(5): 121-128 (in Chinese). | |
[19] | HOFFMANN H P. SysML-based systems engineering using a model-driven development approach[J]. INCOSE International Symposium, 2006, 16(1): 804-814. |
[20] | BONE M, CLOUTIER R. The current state of model based systems engineering:results from the OMG™ SysML request for information 2009[EB/OL]. [2024-04-21]. https://www.omgsysml.org/SysML_2009_RFI_Response_Summary-bone-cloutier.pdf. |
[21] | 尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014:5. |
WEI X K, YANG L, LIU F, et al. Aeroengine prognostics and health management[M]. Beijing: National Defense Industry Press, 2014 (in Chinese). | |
[22] | 兰小平, 姚志强, 吴绶玄, 等. 面向MBSE的复杂系统研发模型追溯管理方法[J]. 系统工程学报, 2023, 38(3): 289-303. |
LAN X P, YAO Z Q, WU S X, et al. Traceability management approach for complex system development based on MBSE[J]. Journal of Systems Engineering, 2023, 38(3): 289-303 (in Chinese). | |
[23] |
马彦丽, 张继忠, 郝冀斌, 等. 基于MBSE的柴油机系统设计建模方法[J]. 图学学报, 2024, 45(2): 355-362.
DOI |
MA Y L, ZHANG J Z, HAO J B, et al. Modeling method for design of diesel engine system based on MBSE[J]. Journal of Graphics, 2024, 45(2): 355-362 (in Chinese).
DOI |
|
[24] |
王海芳, 张雷, 刘慧军, 等. 基于DoDAF的动车组MBSE的研制方法[J]. 图学学报, 2024, 45(2): 339-346.
DOI |
WANG H F, ZHANG L, LIU H J, et al. A DoDAF-based method for developing MBSE for EMU[J]. Journal of Graphics, 2024, 45(2): 339-346 (in Chinese).
DOI |
|
[25] |
闫佳宁, 张安, 黄湛钧, 等. 基于SysML的民机系统功能设计方法及应用[J]. 图学学报, 2024, 45(2): 277-283.
DOI |
YAN J N, ZHANG A, HUANG Z J, et al. Function design method and application of civil aircraft system based on SysML[J]. Journal of Graphics, 2024, 45(2): 277-283 (in Chinese).
DOI |
|
[26] | 侯雄, 李东方. MBSE技术及其在航天控制中的应用[J]. 航天控制, 2023, 41(5): 3-13. |
HOU X, LI D F. MBSE technology and its application in aerospace control[J]. Aerospace Control, 2023, 41(5): 3-13 (in Chinese). | |
[27] | HOFFMANN H P. Model-based systems engineering with rational rhapsody and rational harmony for systems engineering[R]. Amonk: IBM, 2011. |
[28] | MORKEVICIUS A, ALEKSANDRAVICIENE A, MAZEIKA D, et al. MBSE grid: a simplified SysML‐based approach for modeling complex systems[J]. INCOSE International Symposium, 2017, 27(1): 136-150. |
[1] | ZHANG Haoxuan, LIANG Zan, WANG Guoxin, WU Shouxuan, LU Jinzhi, YAN Yan, YUAN Yongji, QIAO Jiaxing. Model integration technology for landing gear systems based on MBSE [J]. Journal of Graphics, 2025, 46(3): 686-696. |
[2] | Fu Guanghui, Xi Ping, Zhang Baoyuan, Li Jixing. Research on Heat Transfer Analysis Data Extraction for Air-Cooled Turbine Blade [J]. Journal of Graphics, 2015, 36(3): 384-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||