| [1] |
马鸿宇, 申立勇, 姜鑫, 等. 数控加工中路径规划与速度插补综述[J]. 图学学报, 2022, 43(6): 967-986.
|
|
MA H Y, SHEN L Y, JIANG X, et al. A survey of path planning and feedrate interpolation in computer numerical control[J]. Journal of Graphics, 2022, 43(6): 967-986 (in Chinese).
|
| [2] |
ZHANG C Q, YUAN C M, SHEN L Y, et al. Global tool path planning method for smooth and length-optimal machining based on vector fields[J]. The International Journal of Advanced Manufacturing Technology, 2024, 134(1/2): 245-259.
DOI
|
| [3] |
SHEN L Y, LYU B W, MA H Y, et al. Single start end tool path generation for arbitrary porous surfaces[J]. Journal of Manufacturing Processes, 2024, 132: 249-260.
DOI
URL
|
| [4] |
MA H Y, KOU Y B, SHEN L Y, et al. Efficient tool path planning method of ball-end milling for high quality manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2025, 93: 102905.
DOI
URL
|
| [5] |
LIANG M, AHAMED S, VAN DEN BERG B. A STEP based tool path generation system for rough machining of planar surfaces[J]. Computers in Industry, 1996, 32(2): 219-231.
DOI
URL
|
| [6] |
TAO S B, TING K L. Unified rough cutting tool path generation for sculptured surface machining[J]. International Journal of Production Research, 2001, 39(13): 2973-2989.
DOI
URL
|
| [7] |
KUKREJA A, DHANDA M, PANDE S S. Efficient toolpath planning for voxel-based CNC rough machining[J]. Computer- Aided Design & Applications, 2021, 18(2): 285-296.
|
| [8] |
QIAN B. Recursive polygon offset computing for rapid prototyping applications based on Voronoi diagrams[J]. The International Journal of Advanced Manufacturing Technology, 2010, 49(9): 1019-1028.
DOI
URL
|
| [9] |
KIM H C. Tool path modification for optimized pocket milling[J]. International Journal of Production Research, 2007, 45(24): 5715-5729.
DOI
URL
|
| [10] |
PARK S C, CHUNG Y C. Tool-path generation from measured data[J]. Computer-Aided Design, 2003, 35(5): 467-475.
DOI
URL
|
| [11] |
HU Y N, TSE W C, CHEN Y H, et al. Tool-path planning for rough machining of a cavity by layer-shape analysis[J]. The International Journal of Advanced Manufacturing Technology, 1998, 14(5): 321-329.
DOI
URL
|
| [12] |
YIN Z. Rough and finish tool-path generation for NC machining of freeform surfaces based on a multiresolution method[J]. Computer-Aided Design, 2004, 36(12): 1231-1239.
DOI
URL
|
| [13] |
BAHLOUL E, BATACHE D. A clear tool path optimization for rough pocket machining with contour-parallel offset tool paths[EB/OL]. (2024-12-16) [2025-03-22]. https://doi.org/10.23055/ijietap.2024.31.6.10257.
|
| [14] |
MAHDAVI-AMIRI A, YU F G, ZHAO H S, et al. VDAC: volume decompose-and-carve for subtractive manufacturing[J]. ACM Transactions on Graphics, 2020, 39(6): 203.
|
| [15] |
CHEN Z C, FU Q. An optimal approach to multiple tool selection and their numerical control path generation for aggressive rough machining of pockets with free-form boundaries[J]. Computer-Aided Design, 2011, 43(6): 651-663.
DOI
URL
|
| [16] |
SCHNEIDER P J, EBERLY D H. 计算机图形学几何工具算法详解[M]. 周长发, 译. 北京: 电子工业出版社, 2005: 401-430.
|
|
SCHNEIDER P J, EBERLY D H. Geometric tools for computer graphics[M]. ZHOU C F, Translate. Beijing: Publishing House of Electronics Industry, 2005: 401-430 (in Chinese).
|
| [17] |
ZUO Y N, ZHANG D Y. Connected components labeling algorithms: a review[C]// 2023 9th International Conference on Computer and Communications. New York: IEEE Press, 2023: 1743-1748.
|
| [18] |
方向, 彭群生, 郑家骧. 2.5轴复杂型腔的刀位轨迹生成算法[J]. 工程图学学报, 2000, 21(1): 19-27.
|
|
FANG X, PENG Q S, ZHENG J X. An algorithm for generating tool paths for 2.5D complex pockets[J]. Journal of Engineering Graphics, 2000, 21(1): 19-27 (in Chinese).
|
| [19] |
ZHANG L X, SUN R Y, GAO X S, et al. High speed interpolation for micro-line trajectory and adaptive real-time look-ahead scheme in CNC machining[J]. Science China Technological Sciences, 2011, 54(6): 1481-1495.
DOI
URL
|