Journal of Graphics
Previous Articles Next Articles
Online:
Published:
Abstract: In view of the existing methods cannot meet the needs for accuracy and speed during classification, this paper proposes a fast land-cover classification method for light detection and ranging (LIDAR) data based on the non-subsampled shearlet transform (NSST) and normal Dempster-Sharer (DS) evidence theory. At first, the NSST is used to decompose LIDAR source data in multi-scale, and the median filter is used to reduce the noise in high frequency image from each layer, then inverse transformation and fuse the images. Secondly, the normal probability distribution function is built and the mass function of LIDAR data is distributed, and synthesis and decisions are made. Experiment confirmed that the classification accuracy of the proposed method in this paper is 86.12%, while the running time is only 0.46 s. So this is a fast and high precision land-cover classification method.
Key words: land-cover classification, light detection and ranging, non-subsampled shearlet transform; normal DS evidence theory
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2015060926
http://www.txxb.com.cn/EN/Y2015/V36/I6/926