欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

胶带输送机智能视频监测与预警方法

  

  1. 西安科技大学计算机科学与技术学院,陕西 西安 710054
  • 出版日期:2017-04-30 发布日期:2017-04-28
  • 基金资助:
    国家自然基金项目(U1261114);中国博士后科学基金资助项目(2016M602941XB);陕西省教育厅科研计划项目(16JK1497);西安科技大学
    教育教学改革与研究项目(JG14040);西安科技大学创新训练项目(201610704158)

Research on Intelligent Monitoring and Warning Method of Belt Conveyor

  1. College of Computer Science & Technology, Xi’an University of Science and Technology, Xi’an Shaanxi 710054, China
  • Online:2017-04-30 Published:2017-04-28

摘要: :针对胶带输送机运动中的跑偏、扭曲等异常问题,提出一种基于视觉计算的胶带
输送机智能监测与预警方法。首先利用高斯滤波建立场景模型,并应用背景减除法提取目标图
像。然后使用Shi-Tomasi 算法检测目标图像中的角点,并利用金字塔LK 光流法跟踪检测到的
角点。最后根据摄像机成像原理将角点坐标从图像坐标系转换至世界坐标系下,计算出角点的
运动速度。根据胶带运输机上角点的速度判断输送机是否正常运行,并在必要时发出预警信息。
实验结果表明该方法能够较为准确、实时地计算出输送机上胶带的运行速度。

关键词: 背景减除法, 角点检测, 光流法, 预警

Abstract: To resolve the problem of belt conveyor’s belt running deviation and distortion, we propose
an intelligent monitoring and warning method of belt conveyor based on visual computing. Firstly,
the video images of belt conveyor in coal mine are preprocessed and the Gaussian Filter is used to
establish the background model. Then, the background subtraction method is applied to get the target
image. Secondly, the Shi-Tomasi algorithm is used to detect the corners of the target image and these
corners are tracked by the method of Pyramid LK optical. Finally, these corners’ coordinates are
converted from the image coordinate system to camera coordinate system according to the principles
of imaging. And we can get the speed of these corners and judge whether the belt conveyor is in a
good condition or not according to the corners’ speed and then send out some warning information in
time when the running belt conveyor is abnormal. The experimental results show that the proposed
method has higher veracity and real time quality.

Key words: background subtraction method, corner detection, optical flow method, warning