欢迎访问《图学学报》 分享到:

图学学报

• 视觉与图像 • 上一篇    下一篇

基于多特征融合的高光谱遥感图像分类研究

  

  1. 北方民族大学计算机科学与工程学院,宁夏 银川 750021
  • 出版日期:2017-06-30 发布日期:2017-07-17
  • 基金资助:
    国家自然科学基金项目(61461003);国家民委创新团队项目资助

Hyperspectral Remote Sensing Image Classification Based on Multiple Feature Fusion

  1. College of Computer Science and Engineering, Beifang University of Nationalities, Yinchuan Ningxia 750021, China
  • Online:2017-06-30 Published:2017-07-17

摘要: 遥感图像分类的应用在遥感图像研究中具有重要意义。为了提高高光谱遥感图像
分类精度,提出了基于多特征融合的高光谱遥感分类方法。该方法将图像的空间特征和光谱特
征归一融合,然后使用AdaBoost 分类器集成算法对特征进行分类。首先,使用主成分分析对高
光谱数据降维,并提取图像的纹理特征和直方图特征,然后将3 种特征归一化;最后使用
AdaBoost 集成分类方法对高光谱遥感数据分类。实验结果表明,相比于单个特征分类,该方法
可取得较高的分类精度。

关键词: 图像分类, 多特征, AdaBoost, 集成算法, 分类精度

Abstract: The application of remote sensing image classification has important significance in the
research of remote sensing image. In order to improve the classification accuracy of hyperspectral
remote sensing images, this paper proposed the hyperspectral classification method based on multiple
features fusion method. The method normalized and fused spatial feature and spectral feature, and then
use the AdaBoost ensemble algorithm to classify the multiple features. First, the method uses principal
component analysis to reduce the dimensionality of hyperspectral data, and extracts the texture feature
and the histogram feature, then the three features will be normalized, finally uses the AdaBoost
ensemble algorithm classification method to classify the remote sensing data of hyperspectral remote
sensing. The result of experimentals shows that compared to the single feature classification, this
proposed method can achieve higher classification accuracy and better classification performance.

Key words: image classification, multiple features, AdaBoost, ensemble algorithm, classification accuracy