摘要: 结合图像梯度特征和颜色特征,在相关滤波器跟踪框架基础上,提出一种改进的 视觉跟踪算法。对颜色特征进行统计建模,结合由稠密目标后验概率积分得到的目标置信积分 和梯度特征相关滤波输出作目标跟踪。同时,还对目标跟踪的结果作质量评估,在跟踪质量非 可靠时启动目标重检测过程,采用基于稠密目标后验概率的置信积分来确定备选目标。对跟踪 质量不可靠且未重检测到可靠目标的视频帧,不进行跟踪模型的在线更新。实验表明,该算法 可以有效避免因遮掩等原因而引起的跟踪不可靠和模型漂移的问题,跟踪性能和几个主流的相 关滤波类跟踪器相比有明显改善。