摘要: 传统目标识别算法中,经典的区域建议网络(RPN)在提取目标候选区域时计算量 大,时间复杂度较高,因此提出一种级联区域建议网络(CRPN)的搜索模式对其进行改善。此外, 深层次的卷积神经网络训练中易产生退化现象,而引入残差学习的深度残差网络(ResNet),能 够有效抑制该现象。对多种不同深度以及不同参数的网络模型进行研究,将两层残差学习模块 与三层残差学习模块结合使用,设计出一种占用内存更小、时间复杂度更低的新型多捷联式残 差网络模型(Mu-ResNet)。采用 Mu-ResNet 与 CRPN 结合的网络模型在无人机目标数据集以及 PASCAL VOC 数据集上进行多目标识别测试,较使用 ResNet 与 RPN 结合的网络模型,识别准 确率提升了近 2 个百分点。