欢迎访问《图学学报》 分享到:

图学学报

• 计算机图形学与虚拟现实 • 上一篇    下一篇

基于深度学习的个性化对话内容生成方法

  

  1. (西北工业大学计算机学院,陕西 西安 710072)
  • 出版日期:2020-04-30 发布日期:2020-05-15
  • 基金资助:
    国家重点研发计划项目(2017YFB1001800);国家自然科学基金项目(61772428,61725205)

Personalized dialogue content generation based on deep learning

  1. (School of Computer Science, Northwestern Polytechnical University, Xi’an Shaanxi 710072, China)
  • Online:2020-04-30 Published:2020-05-15

摘要: 人机对话系统是人机交互领域一个非常重要的研究方向,开放域聊天机器人的研 究受到了广泛关注。现有的聊天机器人主要存在 3 个方面的问题:①无法有效捕捉上下文情境 信息,导致前后对话内容缺乏逻辑关联。②大部分不具备个性化特征,导致聊天过程千篇一律, 且前后对话内容可发生矛盾。③倾向于生成“我不知道”、“对不起”等无意义的通用回复内容, 极大降低用户的聊天兴趣。本研究中利用基于 Transformer 模型的编解码(Encoder-Decoder)结构 分别构建了通用对话模型和个性化对话模型,通过编码历史对话内容和个性化特征信息,模型 可以有效捕捉上下文情境信息以及个性化信息,实现多轮对话过程,且对话内容符合个性化特 征。实验结果表明,基于 Transformer 的对话模型在困惑度(perplexity)和 F1 分数评价指标上相 比于基线模型得到了一定的提升,人工评价显示模型可以正常进行多轮交互对话过程,生成内 容多样性高,且符合给定的个性化特征。

关键词: 深度学习, 对话系统, 聊天机器人, 个性化, 上下文感知

Abstract: Dialogue system is a very important research direction in the field of Human–Machine Interaction and the research of open domain chatbot has attracted much attention. There are three main problems in the existing chatbots. The first is that they cannot effectively capture the context, which leads to the lack of logical cohesion in the dialogue content. Second, most of the existing chatbots do not have specific personalized characteristics, resulting in the monotony in the chat process, and the dialogue content may be contradictory. Third, they tend to generate meaningless replies such as “I don’t know” or “I’m sorry”, which greatly reduces users’ interest in chat. The Encoder-Decoder framework based on Transformer was used to build the general dialogue model and personalized dialogue model. By encoding the historical dialogue content and personalized feature information, the model could effectively capture the context and the personalized information and realize multi-round dialogue process, generating personalized dialogue content. The experimental results showed that the dialogue model based on Transformer obtained better results on the evaluation metrics of perplexity and F1-score compared to the baseline models. Combined with manual evaluation, it is concluded that our dialogue model is capable of carrying out multi-round dialogues, with high content diversity and in line with the given personalized characteristics.

Key words: deep learning, dialogue system, chatbot, personalization, context aware