图学学报 ›› 2021, Vol. 42 ›› Issue (5): 767-774.DOI: 10.11996/JG.j.2095-302X.2021050767
摘要: RGB-D 图像在提供场景 RGB 信息的基础上添加了 Depth 信息,可以有效地描述场景的色彩及 三维几何信息。结合 RGB 图像及 Depth 图像的特点,提出一种将高层次的语义特征反向融合到低层次的边缘 细节特征的反向融合实例分割算法。该方法通过采用不同深度的特征金字塔网络(FPN)分别提取 RGB 与 Depth 图像特征,将高层特征经上采样后达到与最底层特征同等尺寸,再采用反向融合将高层特征融合到低层,同时 在掩码分支引入掩码优化结构,从而实现 RGB-D 的反向融合实例分割。实验结果表明,反向融合特征模型能 够在 RGB-D 实例分割的研究中获得更加优异的成绩,有效地融合了 Depth 图像与彩色图像 2 种不同特征图像 特征,在使用 ResNet-101 作为骨干网络的基础上,与不加入深度信息的 Mask R-CNN 相比平均精度提高 10.6%, 比直接正向融合 2 种特征平均精度提高 4.5%。
中图分类号: