[1] MAUSUMI M, RAHUL K G, MANALI M. Detection and
counting of red blood cells in blood cell images using Hough
transform[J]. International Journal of Computer Applications,
2012, 53(16): 13-17.
[2] FAUSTINO G M, GATTASS M, REHEN S, et al. Automatic
embryonic stem cells detection and counting method in
fluorescence microscopy images[C]//2009 IEEE International
Symposium on Biomedical Imaging: from Nano to Macro.
New York: IEEE Press, 2009: 799-802.
[3] SHARIF J M, MISWAN M F, NGADI M A, et al. Red blood
cell segmentation using masking and watershed algorithm: a preliminary study[J]. 2012 International Conference on
Biomedical Engineering, 2012, 2012: 258-262.
[4] XUE Y, RAY N, HUGH J, et al. Cell counting by regression
using convolutional neural network[C]//European Conference
on Computer Vision. Chma: Springer International Publishing,
2016: 274-290.
[5] COHEN J P, BOUCHER G, GLASTONBURY C A, et al.
Count-ception: counting by fully convolutional redundant
counting[C]//2017 IEEE International Conference on
Computer Vision Workshops. New York: IEEE Press, 2018:
18-26.
[6] JIANG N, YU F H. A multi-column network for cell
counting[J]. OSA Continuum, 2020, 3(7): 1834-1846.
[7] LI Y, ZHANG X, CHEN D. CSRNet: dilated convolutional
neural networks for understanding the highly congested
scenes[EB/OL]. (2018-04-11) [2021-12-08]. https://arxiv.org/
abs/1802.10062.
[8] ZHANG C, SUN C, SU R, et al. Segmentation of clustered
nuclei based on curvature weighting[C]//The 27th Conference
on Image Vision Computing. New York: ACM, 2012: 49.
[9] 刘树杰. 基于卷积神经网络的红细胞检测和计数方法[D].
广州: 华南理工大学, 2017.
LIU S J. Red blood cell detection and counting based on
convolutional neural network[D]. Guangzhou: South China
University of Technology, 2017 (in Chinese).
[10] 徐晓涛. 基于深度目标识别的细胞计数研究[D]. 合肥: 安
徽大学, 2020.
XU X T. Research on cell counting based on depth target
recognition[D]. Hefei: Anhui University, 2020 (in Chinese).
[11] 洪羽萌. 外周血细胞分类与计数在深度学习中的应用[D].
南京: 南京大学, 2019.
HONG Y M. Application of peripheral blood cell classification
and counting in deep learning[D]. Nanjing: Nanjing University,
2019 (in Chinese).
[12] AICH S, STAVNESS I. Improving object counting with
heatmap regulation[EB/OL]. (2018-03-14) [2021-12-08].
https://www.semanticscholar.org/paper/Improving-Object-Cou
nting-with-Heatmap-Regulation-Aich-Stavness/aabbc2880cdc
9af83322e2bac8e2f88d1105f601.
[13] MARSDEN M, MCGUINNESS K, LITTLE S, et al. People,
penguins and petri dishes: adapting object counting models to
new visual domains and object types without
forgetting[EB/OL]. (2017-11-15) [2022-01-03]. https://
ieeexplore.ieee.org/document/8578940.
[14] LEMPITSKY V, ZISSERMAN A. Learning to count objects in
images[EB/OL]. (2010-12-06) [2021-12-18]. https://dl.acm.
org/doi/10.5555/2997189.2997337.
[15] FIASCHI L, KOETHE U, NAIR R, et al. Learning to count
with regression forest and structured labels [EB/OL].
(2012-11-01) [2021-12-22]. https://ieeexplore.ieee.org/document/
6460719.
[16] JIANG N, YU F. A cell counting framework based on random
forest and density map[J]. Applied Sciences, 2020, 10(23):
8346.
[17] GUO Y, STEIN J, WU G, et al. SAU-Net: a universal deep
network for cell counting[C]//The 10th ACM International
Conference on Bioinformatics, Computational Biology and
Health Informatics. New York: ACM, 2019: 299-306.
[18] XIE W, NOBLE J A, ZISSERMAN A. Microscopy cell
counting and detection with fully, convolutional regression
networks[J]. Computer Methods in Biomechanics and Bio,
2018, 6(3-4): 283-292.
[19] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in
deep convolutional networks for visual recognition[J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2015, 37(9): 1904-1916.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional
networks for large-scale image recognition[EB/OL].
(2014-09-04) [2022-01-10]. https://arxiv.org/abs/1409.1556v6.
[21] LIU W, SALZMANN M, FUA P. Context-aware crowd
counting[EB/OL]. (2019-04-15) [2021-12-13]. https://infoscience.
epfl.ch/record/265758.
[22] WANG P, CHEN P, YUAN Y, et al. Understanding convolution
for semantic segmentation[EB/OL]. (2018-06-01) [2021-12-28].
https://arxiv.org/abs/1702.08502v3.
[23] KAINZ P, URSCHLER M, SCHULTER S, et al. You should
use regression to detect cells[C]//International Conference on
Medical Image Computing and Computer Assisted
Intervention-MICCAI. Heidelberg:Springer, 2015: 276-283.
[24] ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd
counting via multi-column convolutional neural network[C]//
2016 IEEE Conf- erence on Computer Vision and Pattern
Recognition. New York:IEEE Press, 2016: 589-597
[25] JIANG X, XIAO Z, ZHANG B, et al. Crowd counting and
density estimation by trellis encoder-decoder
networks[EB/OL]. [2021-12-28]. https://xueshu.baidu.com/
usercenter/paper/show?paperid=147606t0n15c0860jb0b0010hr
729346.
[26] DAI F, LIU H, MA Y, et al. Dense scale network for crowd
counting[EB/OL]. (2021-09-01) [2022-12-28]. https://dl.acm.
org/doi/10.1145/3460426.3463628.
[27] 蒋妮. 基于密度估计的细胞计数方法及其在显微图像中的
应用研究[D]. 杭州: 浙江大学, 2021.
JIANG N. Research on cell counting based on density
estimation and its applications in microscopic image[D].
Hangzhou: Zhejiang University, 2021 (in Chinese).
|