欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (1): 41-49.DOI: 10.11996/JG.j.2095-302X.2023010041

• 图像处理与计算机视觉 • 上一篇    下一篇

基于多尺度特征融合的细胞计数方法

  

  1. 长安大学信息工程学院,陕西 西安 710064
  • 出版日期:2023-02-28 发布日期:2023-02-16
  • 基金资助:
    国家自然科学基金项目(51678061)

Cell counting method based on multi-scale feature fusion

  1. School of Information Engineering, Changʹan University, Xiʹan Shaanxi 710064, China
  • Online:2023-02-28 Published:2023-02-16
  • Supported by:
    National Natural Science Foundation of China (51678061)

摘要:

细胞计数一直是医学影像分析中非常重要的一项工作,在生物医学实验和临床医学等领域起着十 分关键的作用。针对细胞计数工作中存在的由细胞尺寸变化等因素造成的细胞计数精度低的问题,引入高度拥挤 目标识别网络 CSRNet 并加以改进,构建了一种基于多尺度特征融合的细胞计数方法。首先,使用 VGG16 的前 10 层提取细胞特征,避免了由于网络过深造成的小目标信息丢失;其次,引入空间金字塔池化结构提取细胞的多 尺度特征并进行特征融合,降低了因细胞形态各异、尺寸不一和细胞遮挡等问题带来的计数误差;然后,使用混 合空洞卷积对特征图进行解码,得到密度图,解决了 CSRNet 在解码过程中像素遗漏的问题;最后对密度图逐像 素进行回归得到细胞总数。另外,在训练过程中引入了一种新的组合损失函数以代替欧几里得损失函数,不仅考 虑了 ground truth 密度图与预测密度图单个像素点之间的关系,还考虑了其全局和局部的密度水平。实验证明, 优化后的 CSRNet 在 VGG cells 和 MBM cells 数据集上取得了较好的结果,有效改善了由细胞尺寸变化等因素造 成的细胞计数精度低的问题。

关键词:

Abstract:

To address the problem of low cell counting accuracy caused by factors such as cell size variation in cell counting work, the highly crowded target recognition network CSRNet was introduced and improved, and a cell counting method based on multi-scale feature fusion was constructed. First, the first 10 layers of VGG16 were employed to extract cell features, avoiding the loss of small target information due to the deep network. Then, the spatial pyramid pooling structure was introduced to extract the multi-scale features of cells and perform feature fusion, reducing the counting errors caused by different cell shapes, sizes, and cell occlusion. Then the feature map was decoded using the hybrid dilated convolution to obtain the density map, solving the problem of missing pixels in the decoding process of CSRNet. Finally, the density map was regressed pixel by pixel to obtain the total number of cells. In addition, a new combined loss function was introduced in the training process to replace the Euclidean loss function, which not only considered the relationship between the ground truth density map and the single pixel point of the predicted density map, but also considered the global and local density levels. Experiments show that the optimized CSRNet could yield better results on VGG cells and MBM cells datasets, effectively improving the low cell counting accuracy caused by factors such as cell size variation. 

Key words:

中图分类号: