[1] 赵龙, 杨长江, 林易霖, 等. 人工智能在结直肠癌病理研究
中的应用进展[J]. 中华实验外科杂志, 2022, 39(3): 597-601.
ZHAO L, YANG C J, LIN Y L, et al. Application and
development of artificial intelligence in pathological study of
colorectal cancer[J]. Chinese Journal of Experimental Surgery,
2022, 39(3): 597-601 (in Chinese).
[2] 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方
法综述[J]. 计算机科学, 2019, 46(9): 36-46.
WANG Y R, CHEN Q L, WU J J. Research on image semantic
segmentation for complex environments[J]. Computer Science,
2019, 46(9): 36-46 (in Chinese).
[3] 陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域
中的应用综述[J]. 计算机科学, 2019, 46(3): 63-73.
CHEN C, QI F. Review on development of convolutional
neural network and its application in computer vision[J].
Computer Science, 2019, 46(3): 63-73 (in Chinese).
[4] LONG J, SHELHAMER E, DARRELL T. Fully convolutional
networks for semantic segmentation[C]//2015 IEEE
Conference on Computer Vision and Pattern Recognition. New
York: IEEE Press, 2015: 3431-3440.
[5] RONNEBERGER O, FISCHER P, BROX T. U-net:
convolutional networks for biomedical image segmentation[M]//
Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2015: 234-241.
[6] 李翠云, 白静, 郑凉. 融合边缘增强注意力机制和 U-Net 网
络的医学图像分割[J]. 图学学报, 2022, 43(2): 273-278.
LI C Y, BAI J, ZHENG L. A U-Net based contour enhanced
attention for medical image segmentation[J]. Journal of
Graphics, 2022, 43(2): 273-278 (in Chinese).
[7] 陈铭, 梅雪, 朱文俊, 等. 一种新型 Mobile Unet 网络的肺结
节图像分割方法[J]. 南京工业大学学报: 自然科学版,
2022(1): 76-81, 91.
CHEN M, MEI X, ZHU W J, et al. A novel pulmonarynodule
segmentation method using Mobile Unet network[J]. Journal
of Nanjing Tech University: Natural Science Edition, 2022(1):
76-81, 91 (in Chinese).
[8] HOWARD A, SANDLER M, CHEN B, et al. Searching for
MobileNetV3[C]//2019 IEEE/CVF International Conference
on Computer Vision. New York: IEEE Press, 2020:
1314-1324.
[9] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al.
UNet: redesigning skip connections to exploit multiscale
features in image segmentation[J]. IEEE Transactions on
Medical Imaging, 2020, 39(6): 1856-1867.
[10] FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse
attention network for polyp segmentation[M]//Medical Image
Computing and Computer Assisted Intervention. Cham:
Springer International Publishing, 2020: 263-273.
[11] JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-net: a
deep convolutional neural network for medical image
segmentation[C]//2020 IEEE 33rd International Symposium on
Computer-Based Medical Systems. New York: IEEE Press,
2020: 558-564.
[12] CHEN L C, ZHU Y K, PAPANDREOU G, et al.
Encoder-decoder with atrous separable convolution for
semantic image segmentation[M]//Computer Vision - ECCV
2018. Cham: Springer International Publishing, 2018: 833-851.
[13] XU Q, MA Z C, HE N, et al. DCSAU-net: a deeper and more
compact split-attention U-net for medical image
segmentation[EB/OL]. [2022-09-24]. https://arxiv.org/abs/
2202.00972.
[14] JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet++:
an advanced architecture for medical image segmentation[C]//
2019 IEEE International Symposium on Multimedia. New
York: IEEE Press, 2020: 225-2255.
[15] ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep
residual U-net[J]. IEEE Geoscience and Remote Sensing
Letters, 2018, 15(5): 749-753.
[16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. New York: IEEE Press, 2018: 7132-7141.
[17] YU F, KOLTUN V. Multi-scale context aggregation by dilated
convolutions[EB/OL]. [2022-04-18]. https://arxiv.org/abs/1511.
07122.
[18] 曲长波, 姜思瑶, 吴德阳. 空洞卷积的多尺度语义分割网络[J].
计算机工程与应用, 2019, 55(24): 91-95.
QU C B, JIANG S Y, WU D Y. Multiscale semantic
segmentation network based on cavity convolution[J].
Computer Engineering and Applications, 2019, 55(24): 91-95
(in Chinese).
[19] 王军, 冯孙铖, 程勇. 深度学习的轻量化神经网络结构研究
综述[J]. 计算机工程, 2021, 47(8): 1-13.
WANG J, FENG S C, CHENG Y. Survey of research on
lightweight neural network structures for deep learning[J].
Computer Engineering, 2021, 47(8): 1-13 (in Chinese).
[20] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2:
practical guidelines for efficient CNN architecture design[M]//
Computer Vision - ECCV 2018. Cham: Springer International
Publishing, 2018: 122-138.
[21] 冯兴杰, 张天泽. 基于分组卷积进行特征融合的全景分割
算法[J]. 计算机应用, 2021, 41(7): 2054-2061.
FENG X J, ZHANG T Z. Panoptic segmentation algorithm
based on grouped convolution for feature fusion[J]. Journal of
Computer Applications, 2021, 41(7): 2054-2061 (in Chinese).
[22] IBTEHAZ N, RAHMAN M S. MultiResUNet: Rethinking the
U-Net architecture for multimodal biomedical image
segmentation[J]. Neural Networks, 2020, 121: 74-87.
[23] ZHANG H, ZU K K, LU J, et al. EPSANet: an efficient
pyramid split attention block on convolutional neural
network[EB/OL]. [2022-07-22]. https://arxiv.org/abs/2105.14447.
[24] BERNAL J, TAJKBAKSH N, SANCHEZ F J, et al.
Comparative validation of polyp detection methods in video
colonoscopy: results from the MICCAI 2015 endoscopic vision
challenge[J]. IEEE Transactions on Medical Imaging, 2017,
36(6): 1231-1249.
[25] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention
U-net: learning where to look for the pancreas[EB/OL].
[2022-05-20]. https://arxiv.org/abs/1804.03999.
|