[1] |
赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望[J]. 电力科学与工程, 2020, 36(1): 1-8.
|
|
ZHAO Z B, ZHANG W, ZHAI Y J, et al. Concept, research status and prospect of electric power vision technology[J]. Electric Power Science and Engineering, 2020, 36(1): 1-8. (in Chinese)
|
[2] |
ZHOU X Y, ZHUO J C, KRÄHENBÜHL P. Bottom-up object detection by grouping extreme and center points[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2020: 850-859.
|
[3] |
孙宗康, 饶睦敏, 曹裕灵, 等. 基于小样本不均衡数据的供水管道泄漏智能检测算法[J]. 图学学报, 2022, 43(5): 825-831.
|
|
SUN Z K, RAO M M, CAO Y L, et al. Water supply pipeline leakage intelligent detection algorithm based on small and unbalanced data[J]. Journal of Graphics, 2022, 43(5): 825-831. (in Chinese)
|
[4] |
奚川龙. 基于路侧毫米波雷达和相机信息融合的车辆目标检测研究[D]. 重庆: 重庆邮电大学, 2021.
|
|
XI C L. Research on vehicle target detection based on information fusion of roadside millimeter wave radar and camera[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021. (in Chinese)
|
[5] |
赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560.
|
|
ZHAO Z B, JIANG Z G, LI Y X, et al. Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560. (in Chinese)
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 779-788.
|
[7] |
谷雨, 赵军. 列车闸瓦钎及闸瓦故障图像检测算法研究[J/OL]. (2022-07-20) [2022-08-08]. http://kns.cnki.net/kcms/det-ail/10.1034.T.20220719.1607.002.html.
|
|
GU Y, ZHAO J. Research on image detection algorithm of freight train brake shoe bolt and brake shoe fault[J/OL]. (2022-07-20) [2022-08-08]. http://kns.cnki.net/kcms/det-ail/10.1034.T.20220719.1607.002.html. (in Chinese)
|
[8] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
[9] |
YI J R, WU P X, METAXAS D N. ASSD: attentive single shot multibox detector[J]. Computer Vision and Image Understanding, 2019, 189: 102827.
DOI
URL
|
[10] |
赵振兵, 李延旭, 甄珍, 等. 结合KL散度和形状约束的Faster R-CNN典型金具检测方法[J]. 高电压技术, 2020, 46(9): 3018-3026.
|
|
ZHAO Z B, LI Y X, ZHEN Z, et al. Typical fittings detection method with faster R-CNN combining KL divergence and shape constraints[J]. High Voltage Engineering, 2020, 46(9): 3018-3026. (in Chinese)
|
[11] |
翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246.
|
|
ZHAI Y J, YANG X, ZHAO Z B, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 237-246. (in Chinese)
|
[12] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// The 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
|
[13] |
ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[EB/OL]. [2022-07-15]. https://arxiv.org/abs/2010.04159.
|
[14] |
张乃雪, 钟羽中, 赵涛, 等. 基于Smooth-DETR的产品表面小尺寸缺陷检测算法[J]. 计算机应用研究, 2022, 39(8): 2520-2525.
|
|
ZHANG N X, ZHONG Y Z, ZHAO T, et al. Detection method for small-size defects based on Smooth-DETR[J]. Application Research of Computers, 2022, 39(8): 2520-2525. (in Chinese)
|
[15] |
熊怡梦. 基于标签语义和Transformer的元学习小样本目标检测方法研究[D]. 西安: 西安电子科技大学, 2021.
|
|
XIONG Y M. Label semantics and Transformer for meta learning few-shot object detection[D]. Xi′an: Xidian University, 2021. (in Chinese)
|
[16] |
LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query DeNoising[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 13609-13617.
|
[17] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
|
[18] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE Press, 2022: 9992-10002.
|
[19] |
孟晓娟, 张月琴, 郝晓丽, 等. 多分类深度卷积生成对抗网络的皮带撕裂检测[J]. 计算机工程与应用, 2021, 57(16): 269-275.
DOI
|
|
MENG X J, ZHANG Y Q, HAO X L, et al. Multi-class deep convolutional generative adversarial networks for belt tear detection[J]. Computer Engineering and Applications, 2021, 57(16): 269-275. (in Chinese)
DOI
|
[20] |
李军, 李明, 曾蒸, 等. 基于改进激活函数和学习率的双向LSTM研究[J]. 重庆师范大学学报: 自然科学版, 2021, 38(2): 70-76.
|
|
LI J, LI M, ZENG Z, et al. Research on bidirectional LSTM based on improved activation function and learning rate[J]. Journal of Chongqing Normal University: Natural Science, 2021, 38(2): 70-76. (in Chinese)
|
[21] |
何颖宣. 基于多标签学习的螺栓多属性分类方法研究[D]. 北京: 华北电力大学, 2021.
|
|
HE Y X. Research on bolt multi-attribute classification method based on multi-label learning[D]. Beijing: North China Electric Power University, 2021. (in Chinese)
|