图学学报 ›› 2023, Vol. 44 ›› Issue (4): 667-676.DOI: 10.11996/JG.j.2095-302X.2023040667
收稿日期:
2023-01-31
接受日期:
2023-03-16
出版日期:
2023-08-31
发布日期:
2023-08-16
通讯作者:
马旭(1985-),女,讲师,博士。主要研究方向为图像处理和目标检测等。E-mail:作者简介:
郝帅(1986-),男,副教授,博士。主要研究方向为电气设备故障诊断和目标检测等。E-mail:haoxust@163.com
基金资助:
HAO Shuai(), ZHAO Xin-sheng, MA Xu(
), ZHANG Xu, HE Tian, HOU Li-xiang
Received:
2023-01-31
Accepted:
2023-03-16
Online:
2023-08-31
Published:
2023-08-16
Contact:
MA Xu (1985-), lecturer, Ph.D. Her main research interests cover image processing, object detection, etc. E-mail:About author:
HAO Shuai (1986-), associate professor, Ph.D. His main research interests cover electrical equipment fault diagnosis, target detection, etc. E-mail:haoxust@163.com
Supported by:
摘要:
针对复杂环境中输电线路多类缺陷目标的多尺度检测问题,提出一种基于Transformer和感受野模块的YOLOv5输电线路多类缺陷目标检测算法,简记为TR-YOLOv5。首先,搭建了YOLOv5网络,针对复杂背景造成缺陷目标的显著性低,进而影响检测精度的问题,在Backbone部分引入Transformer模块,通过利用多头注意力结构获取特征图像素点间的相关性和全局信息,增强缺陷目标的特征表达能力,从而提升模型检测精度;其次,由于待检测目标受多尺度影响,在Neck部分引入感受野模块提取目标不同尺度的特征,利用空洞卷积增大感受野,为后续PANet结构保留更细致的特征,增强Neck特征融合能力,提高模型对多尺度缺陷目标的检测精度;然后,为了提升预测边框回归精度,引入CIOU函数,进一步提高算法检测精度;最后,利用某电力巡检部门近3年的数据对该算法进行验证。实验结果表明,相比于7种对比算法,本文算法具有较高检测精度的同时具有较好的实时性,其平均检测精度可达95.6%,1280×720分辨率的巡检图像检测速度为125帧/秒。
中图分类号:
郝帅, 赵新生, 马旭, 张旭, 何田, 侯李祥. 基于TR-YOLOv5的输电线路多类缺陷目标检测方法[J]. 图学学报, 2023, 44(4): 667-676.
HAO Shuai, ZHAO Xin-sheng, MA Xu, ZHANG Xu, HE Tian, HOU Li-xiang. Multi-class defect target detection method for transmission lines based on TR-YOLOv5[J]. Journal of Graphics, 2023, 44(4): 667-676.
缺陷类型 | 自定义名称 | 数量(张) |
---|---|---|
销钉脱落 | XT | 342 |
螺母松动 | LSS | 316 |
螺母脱落 | LST | 347 |
放电间隙过大 | FDG | 310 |
绝缘子脱落 | JYT | 212 |
鸟巢 | NC | 235 |
放电间隙设计问题 | FDSJ | 262 |
防鸟刺损坏 | NS | 231 |
放电间隙短接 | FDG | 310 |
垫片缺失 | DP | 323 |
间隔棒断开 | JGB | 364 |
杂物 | ZW | 248 |
表1 缺陷名称和数量
Table 1 Defect name and quantity
缺陷类型 | 自定义名称 | 数量(张) |
---|---|---|
销钉脱落 | XT | 342 |
螺母松动 | LSS | 316 |
螺母脱落 | LST | 347 |
放电间隙过大 | FDG | 310 |
绝缘子脱落 | JYT | 212 |
鸟巢 | NC | 235 |
放电间隙设计问题 | FDSJ | 262 |
防鸟刺损坏 | NS | 231 |
放电间隙短接 | FDG | 310 |
垫片缺失 | DP | 323 |
间隔棒断开 | JGB | 364 |
杂物 | ZW | 248 |
缺陷类型 | Precision | Recall |
---|---|---|
XT | 96.2 | 99.6 |
LSS | 78.2 | 95.7 |
LST | 97.5 | 98.9 |
FDG | 96.1 | 97.3 |
JYT | 99.3 | 97.1 |
NC | 99.8 | 99.0 |
FDSJ | 99.6 | 99.5 |
NS | 96.3 | 96.8 |
FDD | 98.0 | 98.6 |
DP | 88.4 | 86.1 |
JGB | 99.1 | 99.4 |
ZW | 98.5 | 97.4 |
ALL | 95.6 | 97.3 |
表2 TR-YOLOv5模型各类目标检测结果(%)
Table 2 Detection result of TR-YOLOv5 model on various targets (%)
缺陷类型 | Precision | Recall |
---|---|---|
XT | 96.2 | 99.6 |
LSS | 78.2 | 95.7 |
LST | 97.5 | 98.9 |
FDG | 96.1 | 97.3 |
JYT | 99.3 | 97.1 |
NC | 99.8 | 99.0 |
FDSJ | 99.6 | 99.5 |
NS | 96.3 | 96.8 |
FDD | 98.0 | 98.6 |
DP | 88.4 | 86.1 |
JGB | 99.1 | 99.4 |
ZW | 98.5 | 97.4 |
ALL | 95.6 | 97.3 |
C3Trans | RFB | CIOU | mAP (%) | FPS | 参数量 |
---|---|---|---|---|---|
- | - | - | 95.0 | 131.0 | 7 042 489 |
√ | - | - | 95.3(↑0.3) | 130.8 | 7 043 257 |
√ | √ | - | 95.5(↑0.2) | 125.0 | 7 704 057 |
√ | √ | √ | 95.6(↑0.1) | 125.0 | 7 704 057 |
表3 消融实验
Table 3 Ablation experiment
C3Trans | RFB | CIOU | mAP (%) | FPS | 参数量 |
---|---|---|---|---|---|
- | - | - | 95.0 | 131.0 | 7 042 489 |
√ | - | - | 95.3(↑0.3) | 130.8 | 7 043 257 |
√ | √ | - | 95.5(↑0.2) | 125.0 | 7 704 057 |
√ | √ | √ | 95.6(↑0.1) | 125.0 | 7 704 057 |
图9 不同算法检测结果((a)原始图像;(b) Faster RCNN;(c) SSD;(d) YOLOv3;(e) YOLOv4;(f) YOLOv5;(g) YOLOX-s;(h) YOLOv7;(i) TR-YOLOv5)
Fig. 9 The detection results of different algorithm ((a) Original images; (b) Faster RCNN; (c) SSD; (d) YOLOv3; (e) YOLOv4; (f) YOLOv5; (g) YOLOX-s; (h) YOLOv7; (i) TR-YOLOv5)
检测算法 | FPS | mAP@0.5(%) | Weights(M) |
---|---|---|---|
Faster RCNN | 2 | 94.9 | 113.8 |
SSD | 29 | 91.7 | 96.0 |
YOLOv3 | 7 | 93.7 | 123.5 |
YOLOv4 | 14 | 94.3 | 256.2 |
YOLOv5 | 131 | 95.0 | 15.2 |
YOLOX-s | 42 | 94.5 | 34.4 |
YOLOv7 | 36 | 95.3 | 74.8 |
TR-YOLOv5 | 125 | 95.6 | 15.8 |
表4 不同检测算法性能对比
Table 4 Performance comparison of different algorithms
检测算法 | FPS | mAP@0.5(%) | Weights(M) |
---|---|---|---|
Faster RCNN | 2 | 94.9 | 113.8 |
SSD | 29 | 91.7 | 96.0 |
YOLOv3 | 7 | 93.7 | 123.5 |
YOLOv4 | 14 | 94.3 | 256.2 |
YOLOv5 | 131 | 95.0 | 15.2 |
YOLOX-s | 42 | 94.5 | 34.4 |
YOLOv7 | 36 | 95.3 | 74.8 |
TR-YOLOv5 | 125 | 95.6 | 15.8 |
[1] | 赵振兵, 齐鸿雨, 聂礼强. 基于深度学习的输电线路视觉检测研究综述[J]. 广东电力, 2019, 32(9): 11-23. |
ZHAO Z B, QI H Y, NIE L Q. Research overview on visual detection of transmission lines based on deep learning[J]. Guangdong Electric Power, 2019, 32(9): 11-23 (in Chinese). | |
[2] | 蒲天骄, 乔骥, 韩笑, 等. 人工智能技术在电力设备运维检修中的研究及应用[J]. 高电压技术, 2020, 46(2): 369-383. |
PU T J, QIAO J, HAN X, et al. Research and application of artificial intelligence in operation and maintenance for power equipment[J]. High Voltage Engineering, 2020, 46(2): 369-383 (in Chinese). | |
[3] |
WONG S Y, CHOE C W C, GOH H H, et al. Power transmission line fault detection and diagnosis based on artificial intelligence approach and its development in UAV: a review[J]. Arabian Journal for Science and Engineering, 2021, 46(10): 9305-9331.
DOI |
[4] | 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987. |
HAO S, MA R Z, ZHAO X S, et al. Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power System Technology, 2021, 45(8): 2979-2987 (in Chinese). | |
[5] | 高文婷, 刘越. 面向移动增强现实的实时深度学习目标检测方法综述[J]. 图学学报, 2021, 42(4): 525-534. |
GAO W T, LIU Y. Review of real-time deep learning-based object detection for mobile augmented reality[J]. Journal of Graphics, 2021, 42(4): 525-534 (in Chinese). | |
[6] | 李洪安, 郑峭雪, 陶若霖, 等. 基于深度学习的图像超分辨率研究综述[J]. 图学学报, 2023, 44(1): 1-15. |
LI H A, ZHENG Q X, TAO R L, et al. Review of image super-resolution based on deep learning[J]. Journal of Graphics, 2023, 44(1): 1-15 (in Chinese). | |
[7] |
LIANG H G, ZUO C, WEI W M. Detection and evaluation method of transmission line defects based on deep learning[J]. IEEE Access, 2020, 8: 38448-38458.
DOI URL |
[8] | 李辉, 董燕, 刘祥, 等. 基于两阶段深度网络的输电线路异常目标检测方法[J]. 控制与决策, 2022, 37(7): 1873-1882. |
LI H, DONG Y, LIU X, et al. Transmission line abnormal object detection method based on deep network of two-stage[J]. Control and Decision, 2022, 37(7): 1873-1882 (in Chinese). | |
[9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
DOI PMID |
[10] | 戚银城, 武学良, 赵振兵, 等. 嵌入双注意力机制的Faster R-CNN航拍输电线路螺栓缺陷检测[J]. 中国图象图形学报, 2021, 26(11): 2594-2604. |
QI Y C, WU X L, ZHAO Z B, et al. Bolt defect detection for aerial transmission lines using Faster R-CNN with an embedded dual attention mechanism[J]. Journal of Image and Graphics, 2021, 26(11): 2594-2604 (in Chinese). | |
[11] | 顾超越, 李喆, 史晋涛, 等. 基于改进Faster-RCNN的无人机巡检架空线路销钉缺陷检测[J]. 高电压技术, 2020, 46(9): 3089-3096. |
GU C Y, LI Z, SHI J T, et al. Detection for pin defects of overhead lines by UAV patrol image based on improved Faster-RCNN[J]. High Voltage Engineering, 2020, 46(9): 3089-3096 (in Chinese). | |
[12] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37. |
[13] | REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-05-25) [2022-06-14]. https://arxiv.org/abs/1804.02767. |
[14] | BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-06-23) [2022-01-04]. https://arxiv.org/abs/2004.10934. |
[15] | 翁智, 程曦, 郑志强. 基于改进YOLOv3的高压输电线路关键部件检测方法[J]. 计算机应用, 2020, 40(S2): 183-187. |
WENG Z, CHENG X, ZHENG Z Q. Detection method of key components of high-voltage transmission lines based on improved YOLOv3[J]. Journal of Computer Applications, 2020, 40(S2): 183-187 (in Chinese). | |
[16] | 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报, 2023, 43(6): 2319-2331. |
HAO S, YANG L, MA X, et al. Fault detection of YOLOv5 transmission lines based on attention mechanism and cross-scale feature fusion[J]. Proceedings of the CSEE, 2023, 43(6): 2319-2331 (in Chinese). | |
[17] | 祝星馗, 蒋球伟. 基于CNN与Transformer的无人机图像目标检测研究[J]. 武汉理工大学学报: 信息与管理工程版, 2022, 44(2): 323-331. |
ZHU X K, JIANG Q W. Research on object detection for UAV images based on CNN and Transformer[J]. Journal of Wuhan University of Technology: Information & Management Engineering, 2022, 44(2): 323-331 (in Chinese). | |
[18] | 郑伟, 赵金芳, 张奕婧, 等. 基于感受野扩增和注意力机制的U-Net脑肿瘤MR图像分割[J]. 河北大学学报: 自然科学版, 2022, 42(5): 542-551. |
ZHENG W, ZHAO J F, ZHANG Y J, et al. Segmentation algorithm of brain tumor MR images based on receptor field amplification and attentional mechanism[J]. Journal of Hebei University: Natural Science Edition, 2022, 42(5): 542-551 (in Chinese). | |
[19] | DU S J, ZHANG B F, ZHANG P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]// 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning. New York: IEEE Press, 2021: 92-98. |
[20] | GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2022-06-12]. https://doi.org/10.48550/arXiv.2107.08430. |
[21] | WANG C, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06) [2022-06-12]. https://doi.org/10.48550/arXiv.2207.02696. |
[1] | 杨陈成 , 董秀成 , 侯兵 , 张党成 , 向贤明 , 冯琪茗 .
基于参考的Transformer纹理迁移深度图像超分辨率重建
[J]. 图学学报, 2023, 44(5): 861-867. |
[2] | 皮骏, 牛厚兴, 高志云.
融合 CA-BiFPN 的轻量化人体姿态估计算法
[J]. 图学学报, 2023, 44(5): 868-878. |
[3] | 杨红菊, 高敏, 张常有, 薄文, 武文佳, 曹付元.
一种面向图像修复的局部优化生成模型
[J]. 图学学报, 2023, 44(5): 955-965. |
[4] | 李利霞, 王鑫, 王军, 张又元. 基于特征融合与注意力机制的无人机图像小目标检测算法[J]. 图学学报, 2023, 44(4): 658-666. |
[5] | 胡欣, 周运强, 肖剑, 杨杰. 基于改进YOLOv5的螺纹钢表面缺陷检测[J]. 图学学报, 2023, 44(3): 427-437. |
[6] | 李刚, 张运涛, 汪文凯, 张东阳. 采用DETR与先验知识融合的输电线路螺栓缺陷检测方法[J]. 图学学报, 2023, 44(3): 438-447. |
[7] | 毛爱坤, 刘昕明, 陈文壮, 宋绍楼. 改进YOLOv5算法的变电站仪表目标检测方法[J]. 图学学报, 2023, 44(3): 448-455. |
[8] | 孙龙飞, 刘慧, 杨奉常, 李攀. 面向医学图像层间插值的循环生成网络研究[J]. 图学学报, 2023, 44(3): 502-512. |
[9] | 熊举举, 徐杨, 范润泽, 孙少聪. 基于轻量化视觉Transformer的花卉识别[J]. 图学学报, 2023, 44(2): 271-279. |
[10] | 陈刚, 张培基, 龚冬冬, 于俊清. 火电厂监控视频安全服检测方法研究[J]. 图学学报, 2023, 44(2): 291-297. |
[11] | 曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345. |
[12] | 张伟康, 孙浩, 陈鑫凯, 李叙兵, 姚立纲, 东辉. 基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究[J]. 图学学报, 2023, 44(2): 346-356. |
[13] | 李小波, 李阳贵, 郭宁, 范震. 融合注意力机制的YOLOv5口罩检测算法[J]. 图学学报, 2023, 44(1): 16-25. |
[14] | 皮骏, 刘宇恒, 李久昊. 基于YOLOv5s的轻量化森林火灾检测算法研究[J]. 图学学报, 2023, 44(1): 26-32. |
[15] | 张倩, 王夏黎, 王炜昊, 武历展, 李超. 基于多尺度特征融合的细胞计数方法[J]. 图学学报, 2023, 44(1): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||