[1] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
DOI
|
[2] |
LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2009: 951-958.
|
[3] |
芦楠楠, 刘一雄, 邱铭恺. 基于随机传播图卷积模型的零样本图像分类[J]. 图学学报, 2022, 43(4): 624-632.
|
|
LU N N, LIU Y X, QIU M K. Zero-shot image classification based on random propagation graph convolution model[J]. Journal of Graphics, 2022, 43(4): 624-632. (in Chinese)
|
[4] |
ROMERA-PAREDES B, TORR P H. An embarrassingly simple approach to zero-shot learning[C]// The 32nd International Conference on Machine Learning. New York: ACM, 2015: 2152-2161.
|
[5] |
LI X. Learning unseen visual prototypes for zero-shot classification[J]. Knowledge-Based Systems, 2018, 160: 176-187.
DOI
URL
|
[6] |
XIAN Y Q, SCHIELE B, AKATA Z. Zero-shot learning—the good, the bad and the ugly[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 3077-3086.
|
[7] |
DING J Y, HU X, ZHONG X R. A semantic encoding out-of-distribution classifier for generalized zero-shot learning[J]. IEEE Signal Processing Letters, 2021, 28: 1395-1399.
DOI
URL
|
[8] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// The 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014, 2: 2672-2680.
|
[9] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2022-03-05]. https://arxiv.org/abs/1312.6114.
|
[10] |
XIAN Y Q, SHARMA S, SCHIELE B, et al. F-VAEGAN-D2: a feature generating framework for any-shot learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 10267-10276.
|
[11] |
SCHÖNFELD E, EBRAHIMI S, SINHA S, et al. Generalized zero- and few-shot learning via aligned variational autoencoders[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2019: 8239-8247.
|
[12] |
FELIX R, VIJAY KUMAR B G, REID I, et al. Multi-modal cycle-consistent generalized zero-shot learning[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 21-37.
|
[13] |
JI Z. Multi-modal generative adversarial network for zero-shot learning[J]. Knowledge-Based Systems, 2020, 197: 105847.
DOI
URL
|
[14] |
KOBYZEV I, PRINCE S J D, BRUBAKER M A. Normalizing flows: an introduction and review of current methods[EB/OL]. [2022-03-05]. https://arxiv.org/abs/1908.09257.
|
[15] |
XIAN Y Q, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 5542-5551.
|
[16] |
VERMA V K, BRAHMA D, RAI P. Meta-learning for generalized zero-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6062-6069.
DOI
URL
|
[17] |
LIU H. Dual-stream generative adversarial networks for distributionally robust zero-shot learning[J]. Information Sciences, 2020, 519: 407-422.
DOI
URL
|
[18] |
GAO R, HOU X S, QIN J, et al. Zero-VAE-GAN: generating unseen features for generalized and transductive zero-shot learning[J]. IEEE Transactions on Image Processing, 2020, 29: 3665-3680.
DOI
URL
|
[19] |
ZHANG Z L, LI Y J, YANG J, et al. Cross-layer autoencoder for zero-shot learning[J]. IEEE Access, 2019, 7: 167584-167592.
DOI
|
[20] |
MISHRA A, REDDY M S K, MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[EB/OL]. [2022-03-05]. https://arxiv.org/abs/1709.00663.
|
[21] |
VERMA V K, ARORA G, MISHRA A, et al. Generalized zero-shot learning via synthesized examples[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4281-4289.
|
[22] |
YU H, LEE B. Zero-shot learning via simultaneous generating and learning[EB/OL]. [2022-03-05]. https://arxiv.org/abs/1910.09446.
|
[23] |
MA P R, HU X. A variational autoencoder with deep embedding model for generalized zero-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11733-11740.
DOI
URL
|
[24] |
GU Y C, ZHANG L, LIU Y, et al. Generalized zero-shot learning via VAE-conditioned generative flow[EB/OL]. [2022-03-05]. https://arxiv.org/abs/2009.00303.
|
[25] |
AKATA Z, REED S, WALTER D, et al. Evaluation of output embeddings for fine-grained image classification[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2015: 2927-2936.
|
[26] |
XIAN Y Q, AKATA Z, SHARMA G, et al. Latent embeddings for zero-shot classification[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 69-77.
|
[27] |
XIE C. Cross knowledge-based generative zero-shot learning approach with taxonomy regularization[J]. Neural Networks, 2021, 139: 168-178.
DOI
PMID
|
[28] |
XIANG H X, XIE C, ZENG T, et al. Multi-knowledge fusion for new feature generation in generalized zero-shot learning[EB/OL]. [2022-03-05]. https://arxiv.org/abs/2102.11566.
|
[29] |
MALL U, HARIHARAN B, BALA K. Zero-shot learning using multimodal descriptions[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE Press, 2022: 3930-3938.
|
[30] |
MERCEA O B, RIESCH L, KOEPKE A S, et al. Audiovisual generalised zero-shot learning with cross-modal attention and language[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10543-10553.
|
[31] |
WAH C, BRANSON S, WELINDER P, et al. The caltech-UCSD Birds-200-2011 Dataset[EB/OL]. [2022-03-05]. https://www.researchgate.net/publication/251734721_The_Caltech-UCSD_Birds200-2011_Dataset.
|
[32] |
LAMPERT C H, NICKISCH H, HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 453-465.
DOI
PMID
|
[33] |
邵洁, 李晓瑞. 基于混合高斯分布的广义零样本识别[J]. 上海电力大学学报, 2021, 37(5): 475-480.
|
|
SHAO J, LI X R. A method for generalized zero-shot learning based on Gaussian mixture distribution[J]. Journal of Shanghai University of Electric Power, 2021, 37(5): 475-480. (in Chinese)
|
[34] |
钟小容, 胡晓, 丁嘉昱. 基于潜层向量对齐的持续零样本学习算法[J]. 模式识别与人工智能, 2021, 34(12): 1152-1159.
DOI
|
|
ZHONG X R, HU X, DING J Y. Continual zero-shot learning algorithm based on latent vectors alignment[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(12): 1152-1159. (in Chinese)
DOI
|
[35] |
林爽, 王晓军. 运用模态融合的半监督广义零样本学习[J]. 计算机工程与应用, 2022, 58(5): 163-171.
DOI
|
|
LIN S, WANG X J. Semi-supervised generalized zero-shot learning using modal fusion[J]. Computer Engineering and Applications, 2022, 58(5): 163-171. (in Chinese)
DOI
|