图学学报 ›› 2023, Vol. 44 ›› Issue (3): 513-520.DOI: 10.11996/JG.j.2095-302X.2023030513
收稿日期:
2022-09-26
接受日期:
2022-11-24
出版日期:
2023-06-30
发布日期:
2023-06-30
通讯作者:
叶成绪(1970-),男,教授,博士。主要研究方向为机器学习与应用及信息安全等。E-mail:149926237@qq.com
作者简介:
刘冰(1998-),男,硕士研究生。主要研究方向为机器学习与医学图像处理。E-mail:252859670@qq.com
基金资助:
LIU Bing1,2,3(), YE Cheng-xu1,2,3(
)
Received:
2022-09-26
Accepted:
2022-11-24
Online:
2023-06-30
Published:
2023-06-30
Contact:
YE Cheng-xu (1970-), professor, Ph.D. His main research interests cover machine learning and applications, information security, etc. E-mail:149926237@qq.com
About author:
LIU Bing (1998-), master student. His main research interests cover machine learning and medical image processing. E-mail:252859670@qq.com
Supported by:
摘要:
肺部疾病种类繁多,不同病症的影像学表现存在细微差别,且相关医学影像数据普遍存在类别不平衡的现象,使用一般的深度学习模型对其进行区分存在困难。针对上述问题,提出一种面向不平衡数据的肺部疾病细粒度分类模型,其具有双分支的特征提取结构,分别是EfficientNetB0和添加卷积块注意力模块(CBAM)的MobileNetV2,通过注意力机制来增强图像中重要特征的权重。在特征提取后基于多模双线性池化对特征进行融合,并使用Focal Loss损失函数来改善不平衡数据的分类效果,通过超参数自适应调整的策略进行模型训练,最终完成分类。使用Grad-CAM对模型的关注点可视化,以解决分类的可解释性问题。实验结果表明,该模型的分类准确率为0.985,Kappa系数为0.973,F1值为0.981,各评价指标均有显著提升,具有较好的分类性能,有助于肺部疾病的辅助诊断。
中图分类号:
刘冰, 叶成绪. 面向不平衡数据的肺部疾病细粒度分类模型[J]. 图学学报, 2023, 44(3): 513-520.
LIU Bing, YE Cheng-xu. Fine-grained classification model of lung disease for imbalanced data[J]. Journal of Graphics, 2023, 44(3): 513-520.
类别 | Precision | Recall | F1 |
---|---|---|---|
NORMAL | 0.981 | 0.978 | 0.979 |
PNEUMONIA | 0.987 | 0.989 | 0.988 |
COVID-19 | 0.985 | 0.985 | 0.985 |
TUBERCULOSIS | 0.977 | 0.970 | 0.973 |
表1 各类别对应的评价指标
Table 1 Evaluation index corresponding to each category
类别 | Precision | Recall | F1 |
---|---|---|---|
NORMAL | 0.981 | 0.978 | 0.979 |
PNEUMONIA | 0.987 | 0.989 | 0.988 |
COVID-19 | 0.985 | 0.985 | 0.985 |
TUBERCULOSIS | 0.977 | 0.970 | 0.973 |
模型 | ACC | Kappa | Precision | Recall | F1 |
---|---|---|---|---|---|
M1 | 0.968 | 0.945 | 0.952 | 0.943 | 0.947 |
M2 | 0.932 | 0.881 | 0.923 | 0.857 | 0.889 |
M3 | 0.943 | 0.900 | 0.925 | 0.876 | 0.900 |
M4 | 0.924 | 0.865 | 0.925 | 0.823 | 0.871 |
本文 | 0.985 | 0.973 | 0.983 | 0.981 | 0.981 |
表2 消融实验对比结果
Table 2 Comparative results of ablation experiments
模型 | ACC | Kappa | Precision | Recall | F1 |
---|---|---|---|---|---|
M1 | 0.968 | 0.945 | 0.952 | 0.943 | 0.947 |
M2 | 0.932 | 0.881 | 0.923 | 0.857 | 0.889 |
M3 | 0.943 | 0.900 | 0.925 | 0.876 | 0.900 |
M4 | 0.924 | 0.865 | 0.925 | 0.823 | 0.871 |
本文 | 0.985 | 0.973 | 0.983 | 0.981 | 0.981 |
模型 | ACC | Kappa | F1 | Params(M) |
---|---|---|---|---|
VGG16+ResNet50 | 0.912 | 0.846 | 0.852 | 164 |
VGG16+DenseNet121 | 0.933 | 0.897 | 0.877 | 147 |
ResNet50+DenseNet121 | 0.941 | 0.896 | 0.901 | 54 |
CoviNet[ | 0.958 | 0.936 | 0.937 | 116 |
PAM-DenseNet[ | 0.929 | 0.886 | 0.923 | 24 |
CoroNet[ | 0.920 | 0.893 | 0.921 | 33 |
BSGAN[ | 0.954 | 0.929 | 0.945 | 48 |
MHA-CoroCapsule[ | 0.972 | 0.957 | 0.962 | 20 |
EnsembleNet[ | 0.949 | 0.911 | 0.957 | 142 |
本文 | 0.985 | 0.973 | 0.981 | 15 |
表3 不同模型对比实验结果
Table 3 Comparative experimental results of different models
模型 | ACC | Kappa | F1 | Params(M) |
---|---|---|---|---|
VGG16+ResNet50 | 0.912 | 0.846 | 0.852 | 164 |
VGG16+DenseNet121 | 0.933 | 0.897 | 0.877 | 147 |
ResNet50+DenseNet121 | 0.941 | 0.896 | 0.901 | 54 |
CoviNet[ | 0.958 | 0.936 | 0.937 | 116 |
PAM-DenseNet[ | 0.929 | 0.886 | 0.923 | 24 |
CoroNet[ | 0.920 | 0.893 | 0.921 | 33 |
BSGAN[ | 0.954 | 0.929 | 0.945 | 48 |
MHA-CoroCapsule[ | 0.972 | 0.957 | 0.962 | 20 |
EnsembleNet[ | 0.949 | 0.911 | 0.957 | 142 |
本文 | 0.985 | 0.973 | 0.981 | 15 |
图9 Grad-CAM产生的结果展示((a)正常;(b)普通肺炎;(c)新冠肺炎;(d)肺结核)
Fig. 9 Display of results produced by Grad-CAM ((a) Normal; (b) Pneumonia; (c) COVID-19; (d) Tuberculosis)
[1] | SONI M, GOMATHI S, KUMAR P, et al. Hybridizing convolutional neural network for classification of lung diseases[J]. International Journal of Swarm Intelligence Research, 2022, 13(2): 1-15. |
[2] |
FRIX A N, COUSIN F, REFAEE T, et al. Radiomics in lung diseases imaging: state-of-the-art for clinicians[J]. Journal of Personalized Medicine, 2021, 11(7): 602.
DOI URL |
[3] | 楚阳, 徐文龙. 基于计算机辅助诊断技术的阿尔兹海默症早期分类研究综述[J]. 计算机工程与科学, 2022, 44(5): 879-893. |
CHU Y, XU W L. Review of early classification of Alzheimer’s disease based on computer-aided diagnosis technology[J]. Computer Engineering & Science, 2022, 44(5): 879-893. (in Chinese) | |
[4] | 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. |
CHENG K Y, WANG N, SHI W X, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. (in Chinese) | |
[5] |
YU S X, FENG X X, WANG B, et al. Automatic classification of cervical cells using deep learning method[J]. IEEE Access, 2021, 9: 32559-32568.
DOI URL |
[6] | BHAN A, KAPOOR S, GULATI M. Diagnosing Parkinson's disease in early stages using image enhancement, ROI extraction and deep learning algorithms[C]// The 2nd International Conference on Intelligent Engineering and Management. New York: IEEE Press, 2021: 521-525. |
[7] |
SHI F, CHEN B J, CAO Q Q, et al. Semi-supervised deep transfer learning for benign-malignant diagnosis of pulmonary nodules in chest CT images[J]. IEEE Transactions on Medical Imaging, 2022, 41(4): 771-781.
DOI URL |
[8] |
MIYOSHI H, SATO K, KABEYA Y, et al. Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma[J]. Laboratory Investigation, 2020, 100(10): 1300-1310.
DOI PMID |
[9] |
SHI W Q, TONG L, ZHU Y D, et al. COVID-19 automatic diagnosis with radiographic imaging: explainable attention transfer deep neural networks[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2376-2387.
DOI URL |
[10] | 李朝林, 张荣芬, 刘宇红. 融入多尺度双线性注意力的轻量化眼底疾病多分类网络[J]. 计算机应用研究, 2022, 39(7): 2183-2189, 2195. |
LI C L, ZHANG R F, LIU Y H. Lightweight fundus disease multi-classification network with multi-scale bilinear attention[J]. Application Research of Computers, 2022, 39(7): 2183-2189, 2195. (in Chinese) | |
[11] | LAFRAXO S, EL ANSARI M. CoviNet: automated COVID-19 detection from X-rays using deep learning techniques[C]// The 6th IEEE Congress on Information Science and Technology. New York: IEEE Press, 2021: 489-494. |
[12] |
DING Y F, MA Z Y, WEN S G, et al. AP-CNN: weakly supervised attention pyramid convolutional neural network for fine-grained visual classification[J]. IEEE Transactions on Image Processing, 2021, 30: 2826-2836.
DOI PMID |
[13] | YANG L F, LI X, SONG R J, et al. Dynamic MLP for fine-grained image classification by leveraging geographical and temporal information[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2022: 10935-10944. |
[14] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 4510-4520. |
[15] | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// 2019 International Conference on Machine Learning. New York: IEEE Press, 2019: 6105-6114. |
[16] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
DOI PMID |
[17] | GAO Y, BEIJBOM O, ZHANG N, et al. Compact bilinear pooling[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2016: 317-326. |
[18] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// 2018 European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19. |
[19] |
DONG Y N, LIU Q W, DU B, et al. Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2022, 31: 1559-1572.
DOI URL |
[20] |
柴文光, 李嘉怡. 重加权在多类别不平衡医学图像检测中的应用[J]. 计算机工程与应用, 2022, 58(8): 237-242.
DOI |
CHAI W G, LI J Y. Application of re-weight method in multiple class-imbalance medical images detection[J]. Computer Engineering and Applications, 2022, 58(8): 237-242. (in Chinese)
DOI |
|
[21] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
DOI URL |
[22] |
XIAO B, YANG Z Y, QIU X M, et al. PAM-DenseNet: a deep convolutional neural network for computer-aided COVID-19 diagnosis[J]. IEEE Transactions on Cybernetics, 2022, 52(11): 12163-12174.
DOI URL |
[23] |
KHAN A I, SHAH J L, BHAT M M. CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images[J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105581.
DOI URL |
[24] | PASTORINO J, BISWAS A K. Data adequacy bias impact in a data-blinded semi-supervised GAN for privacy-aware COVID-19 chest X-ray classification[C]// The 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York: ACM, 2022: 1-8. |
[25] |
LI F D, LU X Y, YUAN J J. MHA-CoroCapsule: multi-head attention routing-based capsule network for COVID-19 chest X-ray image classification[J]. IEEE Transactions on Medical Imaging, 2022, 41(5): 1208-1218.
DOI URL |
[26] | AL-MONSUR A, KABIR M R, AR-RAFI A M, et al. Covid-EnsembleNet: an ensemble based approach for detecting covid-19 by utilising chest X-ray images[C]// 2022 IEEE World AI IoT Congress. New York: IEEE Press, 2022: 351-356. |
[27] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
DOI |
[1] | 李利霞, 王鑫, 王军, 张又元 .
基于特征融合与注意力机制的无人机图像小目标检测算法
[J]. 图学学报, 2023, 44(4): 658-666. |
[2] | 李鑫, 普园媛, 赵征鹏, 徐丹, 钱文华 .
内容语义和风格特征匹配一致的艺术风格迁移
[J]. 图学学报, 2023, 44(4): 699-709. |
[3] | 李雨, 闫甜甜, 周东生, 魏小鹏. 基于注意力机制与深度多尺度特征融合的自然场景文本检测[J]. 图学学报, 2023, 44(3): 473-481. |
[4] | 史彩娟, 石泽, 闫巾玮, 毕阳阳. 基于双语义双向对齐VAE的广义零样本学习[J]. 图学学报, 2023, 44(3): 521-530. |
[5] | 陆秋, 邵铧泽, 张云磊 . 动态平衡多尺度特征融合的结直肠息肉分割[J]. 图学学报, 2023, 44(2): 225-232. |
[6] | 李小波 , 李阳贵 , 郭宁 , 范震 . 融合注意力机制的 YOLOv5 口罩检测算法[J]. 图学学报, 2023, 44(1): 16-25. |
[7] | 张倩, 王夏黎, 王炜昊, 武历展, 李超. 基于多尺度特征融合的细胞计数方法[J]. 图学学报, 2023, 44(1): 41-49. |
[8] | 谷雨, 赵军.
列车闸瓦钎及闸瓦故障图像检测算法研究
[J]. 图学学报, 2023, 44(1): 88-94. |
[9] | 董哲同, 蔺宏伟. 计算机辅助拓扑设计 ——持续同调在几何设计和处理中的应用[J]. 图学学报, 2022, 43(6): 957-966. |
[10] | 郭文, 李冬, 袁飞 . 多尺度注意力融合和抗噪声的轻量点云人脸识别模型[J]. 图学学报, 2022, 43(6): 1124-1133. |
[11] | 墨瀚林, 郝优, 郭锐, 郝宏翔, 张贺, 李琪, 李华. 图形图像积分与微分不变量的构造与应用[J]. 图学学报, 2022, 43(6): 1182-1192. |
[12] | 武历展, 王夏黎, 张 倩, 王炜昊, 李 超. 基于优化 YOLOv5s 的跌倒人物目标检测方法[J]. 图学学报, 2022, 43(5): 791-802. |
[13] | 王素琴, 任琪, 石敏, 朱登明. 基于异常检测的产品表面缺陷检测与分割[J]. 图学学报, 2022, 43(3): 377-386. |
[14] | 曹力, 吴垚, 徐宜科. 基于中轴表达的三维模型轮廓提取方法[J]. 图学学报, 2022, 43(3): 461-468. |
[15] | 李扬科, 宋全博, 周元峰. 用于手势识别的时空融合网络以及虚拟签名系统[J]. 图学学报, 2022, 43(3): 504-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||