欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (3): 513-520.DOI: 10.11996/JG.j.2095-302X.2023030513

• 图像处理与计算机视觉 • 上一篇    下一篇

面向不平衡数据的肺部疾病细粒度分类模型

刘冰1,2,3(), 叶成绪1,2,3()   

  1. 1.青海师范大学计算机学院,青海 西宁 810000
    2.青海师范大学青海省物联网重点实验室,青海 西宁 810000
    3.藏语智能信息处理及应用国家重点实验室,青海 西宁 810000
  • 收稿日期:2022-09-26 接受日期:2022-11-24 出版日期:2023-06-30 发布日期:2023-06-30
  • 通讯作者: 叶成绪(1970-),男,教授,博士。主要研究方向为机器学习与应用及信息安全等。E-mail:149926237@qq.com
  • 作者简介:

    刘冰(1998-),男,硕士研究生。主要研究方向为机器学习与医学图像处理。E-mail:252859670@qq.com

  • 基金资助:
    青海省物联网重点实验室项目(2022-ZJ-Y21)

Fine-grained classification model of lung disease for imbalanced data

LIU Bing1,2,3(), YE Cheng-xu1,2,3()   

  1. 1. School of Computing, Qinghai Normal University, Xining Qinghai 810000, China
    2. Qinghai Provincial Key Laboratory of IoT, Qinghai Normal University, Xining Qinghai 810000, China
    3. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining Qinghai 810000, China
  • Received:2022-09-26 Accepted:2022-11-24 Online:2023-06-30 Published:2023-06-30
  • Contact: YE Cheng-xu (1970-), professor, Ph.D. His main research interests cover machine learning and applications, information security, etc. E-mail:149926237@qq.com
  • About author:

    LIU Bing (1998-), master student. His main research interests cover machine learning and medical image processing. E-mail:252859670@qq.com

  • Supported by:
    The Key Laboratory of IoT of Qinghai(2022-ZJ-Y21)

摘要:

肺部疾病种类繁多,不同病症的影像学表现存在细微差别,且相关医学影像数据普遍存在类别不平衡的现象,使用一般的深度学习模型对其进行区分存在困难。针对上述问题,提出一种面向不平衡数据的肺部疾病细粒度分类模型,其具有双分支的特征提取结构,分别是EfficientNetB0和添加卷积块注意力模块(CBAM)的MobileNetV2,通过注意力机制来增强图像中重要特征的权重。在特征提取后基于多模双线性池化对特征进行融合,并使用Focal Loss损失函数来改善不平衡数据的分类效果,通过超参数自适应调整的策略进行模型训练,最终完成分类。使用Grad-CAM对模型的关注点可视化,以解决分类的可解释性问题。实验结果表明,该模型的分类准确率为0.985,Kappa系数为0.973,F1值为0.981,各评价指标均有显著提升,具有较好的分类性能,有助于肺部疾病的辅助诊断。

关键词: 细粒度分类, 不平衡数据, 特征提取, 特征融合, 肺部X-ray图像

Abstract:

There are various types of lung diseases, each having distinct imaging manifestations. However, medical image data related to these diseases often suffer from category imbalance, making it difficult to distinguish them using general deep learning models. To tackle these problems, a fine-grained classification model for lung diseases based on imbalanced data was proposed. The model had a two-branch feature extraction structure, namely EfficientNetB0 and MobileNetV2 with a convolutional block attention module (CBAM). The attention mechanism was utilized to enhance the weight of important features in the images. After feature extraction, the features were fused based on multi-mode bilinear pooling, and the Focal Loss function was used to improve the classification effect of imbalanced data. The model was trained using the strategy of hyperparameter adaptive adjustment, and finally the classification was completed. Grad-CAM was also employed to visualize the concerns of the model to address the interpretability of the classification. The experimental results demonstrated that the proposed model achieved a classification accuracy of 0.985, a Kappa coefficient of 0.973, and an F1 value of 0.981. All the evaluation indexes have been significantly improved, which has exhibited excellent classification performance and can act as a helpful tool for the auxiliary diagnosis of lung diseases.

Key words: fine grained classification, imbalanced data, feature extraction, feature fusion, X-ray images of the lungs

中图分类号: