欢迎访问《图学学报》 分享到:

图学学报 ›› 2023, Vol. 44 ›› Issue (5): 928-936.DOI: 10.11996/JG.j.2095-302X.2023050928

• 图像处理与计算机视觉 • 上一篇    下一篇

基于YUV颜色空间GAN网络的图像去雾算法研究

徐祯东(), 张天宇, 张世恒, 姚从荣, 王道累()   

  1. 上海电力大学能源与机械工程学院,上海 201306
  • 收稿日期:2023-04-23 接受日期:2023-06-18 出版日期:2023-10-31 发布日期:2023-10-31
  • 通讯作者: 王道累(1981-),男,教授,博士。主要研究方向为机器学习、机器视觉和图像处理等。E-mail:alfredwdl@shiep.edu.cn
  • 作者简介:徐祯东(1999-),男,硕士研究生。主要研究方向为数字图像处理和图像三维重建。E-mail:935510065@qq.com
  • 基金资助:
    国家自然科学基金项目(61502297)

Image defogging algorithm based on YUV color space GAN network

XU Zhen-dong(), ZHANG Tian-yu, ZHANG Shi-heng, YAO Cong-rong, WANG Dao-lei()   

  1. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 201306, China
  • Received:2023-04-23 Accepted:2023-06-18 Online:2023-10-31 Published:2023-10-31
  • Contact: WANG Dao-lei (1981-), professor, Ph.D. His main research interests cover machine learning, machine vision and image processing, etc. E-mail:alfredwdl@shiep.edu.cn
  • About author:XU Zhen-dong (1999-), master student. His main research interests coverdigital image processing and image reconstruction in 3D. E-mail:935510065@qq.com
  • Supported by:
    National Natural Science Foundation of China(61502297)

摘要:

针对目前单幅图像去雾算法存在有色差,去雾效果不理想等问题,提出了一种基于YUV颜色空间的单幅图像去雾算法。该方法应用了GAN图像着色任务的思想,从正向的角度对雾霾图像实现重新上色。将雾霾图像转换至YUV颜色空间,在Y通道采用密集残差模块采集图片的亮度特征,根据特征对雾霾图像的亮度信息进行调整,降低雾霾对图像的影响。在UV通道上采用4个残差模块对图像颜色信息进行多次提取,根据提取的颜色信息通过模型预测对图像进行重上色。采用包含跳跃连接结构的特征融合网络将底层特征与高层特征进行融合,在融合过程中加入注意力模块以实现更加精细的去雾。实验结果表明,该算法在合成雾霾图像数据集上,RMSE,SSIM和PSNR 3种指标均达到了较高的水平,在真实雾霾图像上,对浓雾和薄雾图像均表现出了优异的去雾效果,具有良好的稳定性。

关键词: 生成对抗网络, 图像去雾, 重上色, YUV颜色空间, 跳跃连接

Abstract:

To address the current problems of chromatic aberration and unsatisfactory defogging effects in the single-image defogging algorithm, we proposed a single-image defogging algorithm based on YUV color space. This method applied the idea of GAN image coloring task to recolor haze images from a positive perspective. The haze image was converted to the YUV color space, and the dense residual module was employed to collect the brightness features of the image from the Y channel. Additionally, the brightness information of the haze image was adjusted according to the characteristics, mitigating the impact of haze on the image. Four residual modules were used on the UV channel to extract image color information multiple times, and recolored the image through model prediction based on the extracted color information. A feature fusion network, including a skip connection structure, was utilized to fuse low-level features with high-level ones. Furthermore, the addition of an attention module during the fusion process led to more refined dehazing. The experimental results demonstrated the algorithm’s efficacy, showcasing remarkable performance in terms of RMSE, SSIM, and PSNR on the synthetic haze image datasets. On the real haze image, the algorithm displayed excellent performance on dense fog and thin fog images, ultimately leading to an outstanding defogging effect and ensuring a high level of stability.

Key words: GAN, image dehazing, recolor, YUV color space, jump connection

中图分类号: